
Copyright 2006 The MathWorks, Inc. 1

©
20

06
 T

he
 M

at
hW

or
ks

, I
nc

.

Taking Control of Your Code:
Essential Software Development
Tools for Engineers
Steve Eddins, Ph.D.

October 9, 2006

International Conference on Image Processing

Copyright 2006 The MathWorks, Inc. 2

Modern Engineering Work Requires
Software

GRAPHIC TBD

Engineers in all disciplines rely heavily on software.
Much of the software is custom code, written in a variety of languages:
Fortran, C, C++, MATLAB®, Java, HDL, PHP, etc.
Applications include data analysis, simulation, embedded controllers,
interfacing with lab instruments, etc.
Software projects vary in size from hundred-line MATLAB scripts to
applications requiring tens of thousands of lines.

Copyright 2006 The MathWorks, Inc. 3

Engineers Write Software — or Manage
People Who Do

You write software for yourself.
Or…
You write software that other people use.
Or…
You supervise people who write software.

Copyright 2006 The MathWorks, Inc. 4

Everyone Struggles with Complex
Software Projects

Project size

Pr
oj

ec
t e

ffo
rt

Complexity gap

The engineer’s dilemma: You’re not a full-time programmer, and you don’t
especially want to become one. But when the software projects stumble, your
engineering productivity suffers.
Typical problems:
• Last month’s results can’t be reproduced because the software changed.
• Collaborators use different versions of the software, resulting in confusion.
• Software is “brittle.” That is, it is difficult to modify without breaking it.

Why do software problems consistently surprise us?
Answer: The complexity gap

Copyright 2006 The MathWorks, Inc. 5

Improving Your Approach to Software
Development

Project size

Pr
oj

ec
t e

ffo
rt

The good news: It is possible to get better, incrementally, at this software
development business.
And it doesn’t require fancy new programming languages or methodologies.
By adopting basic tools and methods, you can increase the quality and
reliability of your code, and you can reduce the overall development effort
needed.

Copyright 2006 The MathWorks, Inc. 6

Learning and Applying Basic Software
Tools

You need not be a master carpenter or plumber to handle basic maintenance
and handy work around your home. But wouldn’t it be frustrating if you didn’t
even have a screwdriver?
In software development, there are tools and techniques not mentioned in
school that software professionals know and rely upon. We’ll talk about some
of these tools and techniques in this presentation:
• Version control systems
• Unit testing
• Bad code smells
• Code quality metrics
• Refactoring

Copyright 2006 The MathWorks, Inc. 7

Using a Version Control System

Pragmatic Programmer Tip:

Always Use Version Control!

A version control system tracks every change made to source code and other
documents – what the change was, who made it, and when it was made. It can
roll back a file to a previous state, show you what has changed since last
month, help you reliably reproduce results, and facilitate collaboration.
Pragmatic Programmer Tip #23: Always Use Source Code Control
“Always. Even if you are a single-person team on a one-week project. Even if
it’s a ‘throw-away’ prototype. […] Even if we’re not working on a project, our
day-to-day work is secured in a repository.” [Hunt and Thomas, page 88]
Get a version control system, learn to use it, and use it every day you work
with code.
Key vocabulary:
Repository – container of the current version and all previous versions of all
files associated with a project; managed by the version control system
Working copy – a copy of project files on your own computer that you can
modify
Commit – use the version control system to put a set of file modifications into
the repository
Diff – a display of the differences between a file in your working copy and the
version of the file in the repository

Copyright 2006 The MathWorks, Inc. 8

Version Control — Your Project’s Undo
Button

Have you ever started making a few “simple” changes, spent a day or so
working on them, and then changed your mind? Maybe you realized the
changes were misguided, or that they were more complicated than you
expected.
Or – have you ever been caught in the middle of modifying your code by a
request to do a demonstration? And you can’t, because the modifications
aren’t complete and working yet.
With a version control system, you can always revert to the latest version in
the repository, or to any previous version.
[Demo – interacting with a version control system – revert to repository
version; change logs; diffs]

Copyright 2006 The MathWorks, Inc. 9

Version Control — Your Project’s Time
Machine

Can you reproduce results from a paper you wrote two years ago?
Reproducibility is an important concept in many scientific and engineering
disciplines. But reproducing results based on software can be difficult or
impossible without version control.
When you get in the habit of using version control, you’ll be able to reproduce
past results at will.

Copyright 2006 The MathWorks, Inc. 10

Reconstructing Your Files from a
Particular Date

[Demo – reconstructing a file based on a date]

Copyright 2006 The MathWorks, Inc. 11

Reconstructing a Particular Release

Do you write code for others to use? For example, have you written software
tools used by everyone in your lab? Then start thinking in terms of “releases.”
Whenever you distribute updated files, you are distributing a new release, and
you should give it a name or number.
When someone reports a problem with your tools, your first question should be
“What release of the tools are you using?” Then reconstruct your own working
copy of that release, so you can reproduce and then diagnose the problem.
[Demo – “tagging” a set of files as a release]

Copyright 2006 The MathWorks, Inc. 12

Version Control Facilitates Collaboration

deblur.m

deblur.m

“Version control is indispensable on team projects.” [McConnell, Code
Complete, page 668]
I would refuse to work on any sort of collaborative software development
project that doesn’t use version control.
Version control resolves the thorny question of “who has the latest version of
this file?”
Version control shows you at a glance whether anyone else on the team has
changed any of the files you have.
Version control lets you easily update your files to the latest versions.
Version control on a server allows anyone (with permission) to access the
latest files at any time.

Copyright 2006 The MathWorks, Inc. 13

Version Control Repository—Your Single
Source of “Truth”

deblur.m

deblur.m

Repository

Two collaborators are working on the same set of files. Whose copy of
deblur.m is the latest? How do you keep track?
A version control system completely and unambiguously answers this
question. No individual is the keeper of the latest files. Instead, the repository
is the sole source of “truth.”
No one changes files in the repository directly. The version control system
manages all repository changes.

Copyright 2006 The MathWorks, Inc. 14

Determining If Your Files Have Been
Changed

Version control lets you see at a glance if anyone else has changed the files
you are working on.
[Demo]

Copyright 2006 The MathWorks, Inc. 15

Getting the Latest Changes

Version control lets you quickly update your working copy with the latest
changes.
[Demo]

Copyright 2006 The MathWorks, Inc. 16

Using a Web-Based Repository

deblur.m

deblur.m
Web-based
repository

Collaboration doesn’t work unless all collaborators have ready access to the
files.
All major version control systems have Internet-based servers and clients.
If you can use a Web browser, you can use a version control client.
If you or someone else can set up a repository server on the Internet, then
anyone with the right access permission and a version control client can
participate.
If you don’t have the Web expertise and a server available, inexpensive
commercial services (and some free services as well) can do it for you.

Copyright 2006 The MathWorks, Inc. 17

Choosing Your Version Control Tools

CVS? Subversion? Perforce?
AccuRev? SourceSafe?

Web browser? Command
line?

Windows, Macintosh, Linux?

To help you get started, let me recommend some specific tools. These are not
the only good choices available to you. Other tools may be a better fit for your
particular circumstances. But I’ve tried these tools, and I’m confident they will
work for most people in most situations.

Copyright 2006 The MathWorks, Inc. 18

Use Subversion

Use Subversion for your version control system.
Subversion is a modern, freely available, actively maintained, open-source
version control system. It works well, and it has easy-to-use clients on all
major platforms. The Windows installer, which I have tried, couldn’t be easier.
There are several good books about Subversion, including one that’s free. And
there are several commercial and free repository hosting providers.
Obtain Subversion from:
subversion.tigris.org/
Other version control system choices:
• CVS
• Commercial offerings such as Perforce
There are many others. For a comprehensive list, see:
en.wikipedia.org/wiki/List_of_revision_control_software
For a comparison of different version control systems, see:
en.wikipedia.org/wiki/Comparison_of_revision_control_software

Copyright 2006 The MathWorks, Inc. 19

Use TortoiseSVN on Windows
RapidSVN on Linux or MacOS

On all platforms, you can interact with a Subversion repository using the
command-line interface. If command-line interfaces make you happy, stop
here.
Easy-to-use GUI tools are available on all major platforms.
On Windows, I like TortoiseSVN because it integrates into the Windows
Explorer. I’ve been using TortoiseSVN in my demos. It is available from:
tortoisesvn.tigris.org/
Another GUI interface, RapidSVN, is available on most major platforms,
including Windows, Linux, and Macintosh. RapidSVN is available from:
rapidsvn.tigris.org/
For Web-based repository browsing, try WebSVN, available from:
websvn.tigris.org/

Copyright 2006 The MathWorks, Inc. 20

Use Commercial Web-Based Repository
Providers

Not everyone knows how to set up a publicly accessible Web server that’s
configured properly to host a Subversion repository. Also, you’d need to learn
some administrative details, such as how to control who has read and/or write
access to the repository. You’d also have to worry about doing regular
backups.
Don’t let these concerns stop you. There are services out there that will set
everything up for you. Some are commercial, some are free. I prefer to use an
inexpensive commercial service, so that I don’t feel bad asking for support if I
need it.
[Demo – if Internet access is available – commercial Subversion hosting
provider; setting up repositories; browsing repositories; controlling access]

Copyright 2006 The MathWorks, Inc. 21

Improving Code Quality

Communicate with people,
not computers

Minimize complexity

What a challenging topic! It could be an entire course of study. How can we
usefully spend a few minutes talking about it?
Here are a few ideas that are widely accepted, effective in practice, and don’t
require specialized training to learn and apply:
• Unit testing
• Bad code smells
• Code quality metric
• Refactoring
These concepts and techniques can be learned and applied individually, but
they also reinforce each other.
Along the way, remember these two fundamental principles that underlie most
techniques for assessing and improving the quality of code:
• Write code to communicate effectively with people, not computers
• Write and organize code to minimize complexity
When someone tells you a “rule” for writing code, evaluate it against these
principles.

Copyright 2006 The MathWorks, Inc. 22

Write Unit Tests — Run Them Often
function test_results = tpBasic(test_results)
[U,V] = dftuv(4, 5);
act1 = U;
exp1 = [0 0 0 0 0

1 1 1 1 1
2 2 2 2 2
-1 -1 -1 -1 -1];

act2 = V;
exp2 = [0 1 2 -2 -1

0 1 2 -2 -1
0 1 2 -2 -1
0 1 2 -2 -1];

test_results = CheckTestPoint(test_results, ...
{act1, exp1}, ...
{act2, exp2});

function test_results = tpBasic(test_results)
[U,V] = dftuv(4, 5);
act1 = U;
exp1 = [0 0 0 0 0

1 1 1 1 1
2 2 2 2 2
-1 -1 -1 -1 -1];

act2 = V;
exp2 = [0 1 2 -2 -1

0 1 2 -2 -1
0 1 2 -2 -1
0 1 2 -2 -1];

test_results = CheckTestPoint(test_results, ...
{act1, exp1}, ...
{act2, exp2});

There are many types of test types, such as unit, component, integration,
regression, and system tests. [McConnell, page 500]
A unit test verifies the execution of a single routine, class, or small program. In
professional software organizations, unit tests are often written by software
developers instead of quality engineers.
To encourage frequent use of unit tests, they should be easy to run, easy to
write, and execute in just a few seconds. If everything is OK, they should be
silent, or almost silent.
Remember that writing a unit test is a form of communication – you are
recording in a very explicit fashion exactly how you expect your routine to be
called, and exactly what you expect your routine to do.
Experienced software developers know that time saved by skipping test writing
is more than lost later by time spent debugging. Many (most?) developers
learn this the hard way. I did.

[Examples – Image Processing Toolbox tests; Digital Image Processing Using
MATLAB tests]

Copyright 2006 The MathWorks, Inc. 23

Beg, Borrow, or Steal a Test Harness

>> RunAllTests .
Test: tbound2eight passed
Test: tchapter10 passed
Test: tchapter11 passed
Test: tchapter12 passed
Test: tchapter2 passed
Test: tchapter3 passed

>> RunAllTests .
Test: tbound2eight passed
Test: tchapter10 passed
Test: tchapter11 passed
Test: tchapter12 passed
Test: tchapter2 passed
Test: tchapter3 passed

A test harness makes it easy for you to add and run tests. Do use a test
harness, but don’t create one if you don’t need to. See this page for a list of at
least 40 test harnesses for different languages and environments, including
MATLAB:
en.wikipedia.org/wiki/List_of_unit_testing_frameworks
Or you can search for “unit test” on the MATLAB Central File Exchange to find
even more test harnesses for MATLAB:
www.mathworks.com/matlabcentral/fileexchange
[Example – Test harness for Digital Image Processing Using MATLAB]

Copyright 2006 The MathWorks, Inc. 24

Exercise all Lines, all Branches

What makes for a good unit test?
First, I have to emphasize that just having a unit test, any unit test, is so much
better than having none at all!
If you are aiming higher, though, the minimal criterion is that the test should
exercise every line of code at least once. This is called the “code coverage”
criterion.
The next step is to achieve complete “branch coverage.” That is, every
predicate term is tested for at least one true and one false value.
As McConnell says, because “exhaustive testing is impossible, practically
speaking, the art of testing is that of picking the test cases most likely to find
errors.” [McConnell, page 505] There is a lot of existing science and
experience behind this “art.” To learn more, see section 22.3, “Bag of Testing
Tricks,” in [McConnell].

Copyright 2006 The MathWorks, Inc. 25

Limitations of Testing

“Testing by itself does not improve software quality. Test results are an
indicator of quality, but in and of themselves they don’t improve it. Trying to
improve software quality by increasing the amount of testing is like trying to
lose weight by weighing yourself more often. … If you want to improve your
software, don’t just test more; develop better.” [McConnell, page 501]

Copyright 2006 The MathWorks, Inc. 26

Recognize “Bad Code Smells”

A bad code smell is a characteristic of code that causes an experienced
programmer to pause, wrinkle his or her nose, and think, “There’s a good
chance something bad is going to happen here.” The odor metaphor resonates
strongly because smell is such a powerful memory cue.
Fowler’s Refactoring includes a catalog of smells in Chapter 3. Read them.
Find two or three that make sense to you and learn to sniff for them.

Comments

Refused bequestData classIncomplete library class

Alternative class with
different interfaces

Inappropriate intimacyMiddle man

Message chainsTemporary fieldSpeculative generality

Lazy classParallel inheritance
hierarchies

Switch statements

Primitive obsessionData clumpsFeature envy

Shotgun surgeryDivergent changeLong parameter list

Large classLong methodDuplicated code

Copyright 2006 The MathWorks, Inc. 27

Don’t Repeat Yourself

Duplicated code is “number one in the stink parade.” [Fowler, page 76] This is
such a common theme in the software literature that “don’t repeat yourself”
has its own acronym (DRY).
Why? Because anything repeated in two or more places will eventually be
wrong in at least one.

Copyright 2006 The MathWorks, Inc. 28

Suspect Switch Statements

A

B

C

Switch statements aren’t bad on their own; it’s just that they have a strong
tendency to get copied from place to place.
In an object-oriented language, replace a switch statement with some form of
polymorphism. In a procedural language, extract the switch statements into a
single routine that hides the details.
[Example: imread, imwrite, and imfinfo in MATLAB 5]

Copyright 2006 The MathWorks, Inc. 29

Comments Are Good, Right?

% I put this comment here because I was taught to comment
% my code.

string_args = {'nearest neighbor', 'linear', 'spline', ...
'pchip', 'cubic', 'v5cubic', 'ram-lak', ...
'shepp-logan','cosine','hamming', 'hann', ...
'none'};

This bad code smell is certainly counterintuitive, since we were all taught to
comment our code.
Fowler: “Don’t worry, we aren’t saying that people shouldn’t write comments.
In our olfactory analogy, comments aren’t a bad smell; indeed they are a
sweet smell. The reason we mention comments here is that comments often
are used as a deodorant. It’s surprising how often you look at thickly
commented code and notice that the comments are there because the code is
bad.” [Fowler, page 87]
McConnell quotes Kernighan and Plauger: “Don’t document bad code – rewrite
it.” [McConnell, page 568]

Copyright 2006 The MathWorks, Inc. 30

Comments Are Good, Right?

% The interpolation options must be first in this list. If
% the number of interpolation options changes, you have to
% change the string option parsing code below.

string_args = {'nearest neighbor', 'linear', 'spline', ...
'pchip', 'cubic', 'v5cubic', 'ram-lak', ...
'shepp-logan','cosine','hamming', 'hann', ...
'none'};

I wrote the comment above when revising Image Processing Toolbox function
iradon.m. It’s a classic example of using a comment as a deodorant to cover
up the fact that the code is bad.

Copyright 2006 The MathWorks, Inc. 31

Comments Are Good, Right?

interp_strings = {'nearest neighbor', 'linear', 'spline', ...
'pchip', 'cubic', 'v5cubic'};

filter_strings = {'ram-lak','shepp-logan','cosine',...
'hamming', 'hann', 'none'};

string_args = [interp_strings filter_strings];

Now the code communicates the programmer’s intent. The comment is no
longer necessary.

Copyright 2006 The MathWorks, Inc. 32

Apply the “Magic Metric” — Cyclomatic
Complexity

For each function (method, routine, procedure):

The number of decision points plus 1

For each function (method, routine, procedure):

The number of decision points plus 1

We move now from the qualitative to the quantitative. The cyclomatic
complexity metric assigns a positive integer to each routine (function or
method) in a program.
I call it the magic metric because it is:
• Easy to compute
• Easy to understand
• Independent of programming language
• Widely accepted
• Well correlated with program quality
From the Carnegie Mellon Software Engineering Institute (SEI): “Cyclomatic
complexity is the most widely used member of a class of static software
metrics. Cyclomatic complexity may be considered a broad measure of
soundness and confidence for a program. Introduced by Thomas McCabe in
1976, it measures the number of linearly-independent paths through a program
module.”
www.sei.cmu.edu/str/descriptions/cyclomatic_body.html

Cyclomatic complexity is often called McCabe complexity.

Copyright 2006 The MathWorks, Inc. 33

Cyclomatic Complexity — Simple to Use,
Understand
idxGroupedByLevel = {};
done = false;
findHole = false; % start with an object boundary
while ~done

if (findHole)
I = FindOutermostBoundaries(holes);
holes = holes(~I); % remove processed boundaries
idxGroupedByLevel = [idxGroupedByLevel, {holeIdx(I)}];
holeIdx = holeIdx(~I); % remove indices of processed boundaries

else
I = FindOutermostBoundaries(objs);
objs = objs(~I);
idxGroupedByLevel = [idxGroupedByLevel, {objIdx(I)}];
objIdx = objIdx(~I);

end
if (processHoles)

findHole = ~findHole;
end
if (isempty(holes) && isempty(objs))

done = true;
end

end

Computing cyclomatic complexity for a routine:
“Add one for the straight path through the routine.
Add one for each of the following keywords, or their equivalents: if while
repeat for and or
Add one for each case in a [switch] statement.” [McConnell, page 458]
In MATLAB, don’t forget to count the elseif.

Copyright 2006 The MathWorks, Inc. 34

Cyclomatic Complexity — Correlated with
Bug Risk

Simple program, low risk

1 10

Moderate risk

10 20

High risk

20 50

Untestable program, very high risk

50+

Source: Software Engineering Institute (SEI)
www.sei.cmu.edu/str/descriptions/cyclomatic.html
Studies:
• McCabe, Tom. 1976. “A Complexity Measure.” IEEE Transactions on
Software Engineering, SE-2, no. 4 (December): 308-20.
• Shen, Vincent Y., et al. 1985. “Identifying Error-Prone Software – An
Empirical Study.” IEEE Transactions on Software Engineering, SE-11, no. 4
(April): 317-24.
• Ward, William T. 1989. “Software Defect Prevention Using McCabe’s
Complexity Metric.” Hewlett-Packard Journal. April, 64-68.
The Ward study reported significantly higher program reliability produced by
using the complexity metric at Hewlett-Packard.
At The MathWorks, we have ample anecdotal evidence that high complexity
numbers are correlated with problematic code, and that reducing complexity
numbers results in code that’s much easier to understand and maintain.
On the Image and Geospatial Team at The MathWorks, our presubmission
code checklist includes this:

“Have you checked the McCabe complexity metric? If you're modifying
existing code, try to keep the metric from going up for routines you
touch. If you're creating new code, aim for the target of a complexity
beneath 10 for each new routine.”

Copyright 2006 The MathWorks, Inc. 35

Untestable program, very high risk

Moderate risk

Set Coding Standards Based on
Complexity
1 10

10 20

20 50

50+

Simple program, low risk

High risk

What coding rules should you follow on your project? If you had to pick just
one, make it be this:
No routines allowed with a cyclomatic complexity higher than 10.

Do you supervise people who write code? Insist that they follow this rule.

Why so much focus on the ordinary routine? It is the fundamental unit of code
organization in almost every widely-used programming language. Improve
your routines, and you improve all of your code.

Copyright 2006 The MathWorks, Inc. 36

Measuring Complexity Automatically

Cyclomatic complexity is easy to compute, but doing it manually gets old very
fast. Fortunately, you can find tools that compute it for you.
In recent releases of MATLAB (R2006a and R2006b), the mlint function has
an undocumented option for reporting the cyclomatic complexity of functions
within an M-file:
mlint –cyc foo
For other languages, some teams at The MathWorks use Source Monitor, a
free tool that can compute software metrics for C++, C, C#, Java, Delphi,
Visual Basic (VB6) or HTML.
www.campwoodsw.com/sourcemonitor.html

Copyright 2006 The MathWorks, Inc. 37

Refactoring Your Code

Every change to source code
strongly tends to increase

code badness

Steve’s 2nd law of software thermodynamics:
Every change to source code strongly tends to increase code badness.

(I’m sorry, I don’t have a 1st law.)
Most programmers come to realize, sooner or later, that preserving clean
design and maintainable code requires constant vigilance.
Programmers also learn, though, that it’s dangerous to modify working code,
because it’s all too easy to introduce new bugs.
So what to do? Use refactoring – a set of programming practices designed to
allow a programmer to improve the design and structure of existing code
regularly and safely.

Resist the temptation to be lazy in terminology – “refactoring” means a specific
set of programming practices; it isn’t just any ol’ big code rewrite.

Copyright 2006 The MathWorks, Inc. 38

Improving the Design of Existing Code

What is refactoring? I’ll let refactoring guru Martin Fowler explain it:
“Refactoring is the process of changing a software system in such a
way that it does not alter the external behavior of the code yet improves
its internal structure. It is a disciplined way to clean up code that
minimizes the chances of introducing bugs. In essence when you
refactor you are improving the design of the code after it has been
written.” [Fowler, page xvi]

Key refactoring concepts:
• Have good tests in place first
• Make only changes that do not alter external behavior
• Make only one refactoring change at a time
• Run tests after each change

Copyright 2006 The MathWorks, Inc. 39

Check Everything In — Write Tests

If you have no tests, and if the code isn’t checked into a version control
system, then STOP!
You may proceed no further with refactoring until you have good tests and
everything is checked in.

Copyright 2006 The MathWorks, Inc. 40

Extracting a Method

% Set the mouse pointer to be the Window/Level custom
% pointer. The custom cdata shape is stored in the file
% cursor_contrast.png in the IPT icon directory.
iconfile = fullfile(ipticondir, 'cursor_contrast.png');
cdata = makeToolbarIconFromPNG(iconfile);
% We just need the first plane; offset it by 1
cdata = cdata(:,:,1) + 1;
set(fig, 'Pointer', 'custom', 'PointerShapeCData', cdata);

% Set the mouse pointer to be the Window/Level custom
% pointer. The custom cdata shape is stored in the file
% cursor_contrast.png in the IPT icon directory.
iconfile = fullfile(ipticondir, 'cursor_contrast.png');
cdata = makeToolbarIconFromPNG(iconfile);
% We just need the first plane; offset it by 1
cdata = cdata(:,:,1) + 1;
set(fig, 'Pointer', 'custom', 'PointerShapeCData', cdata);

set(fig, 'Pointer', 'custom', 'PointerShapeCData', ...
getWindowLevelPointer);

set(fig, 'Pointer', 'custom', 'PointerShapeCData', ...
getWindowLevelPointer);

Fowler’s refactoring catalog includes several common elements for each item:
• A brief summary: “You have a code fragment that can be grouped together.
Turn the fragment into a method whose name explains the purpose of the
method.”
• Motivation: When a method is too long; when a code fragment needs a
comment to explain its purpose
• Procedure: Detailed, mechanical steps for transforming existing code into the
new form. In extract method, watch for problems with local and temporary
variables. Use other refactorings to solve these problems if necessary. The
procedures are cautious at every step. For example, Fowler has you make
sure the extracted method compiles successfully before modifying the old code
to call the new method.

Copyright 2006 The MathWorks, Inc. 41

Using a Guard Clause

function out = watershed(in)
if ~isempty(in)

if ~any(isnan(in(:)))
watershed alg code
...
...

else
error('NaN input')

end
else

out = [];
end

function out = watershed(in)
if ~isempty(in)

if ~any(isnan(in(:)))
watershed alg code
...
...

else
error('NaN input')

end
else

out = [];
end

function out = watershed(in)
if isempty(in)
out = [];
return;

end

if any(isnan(in(:)))
error('NaN input')

end

watershed alg code
...
...

function out = watershed(in)
if isempty(in)
out = [];
return;

end

if any(isnan(in(:)))
error('NaN input')

end

watershed alg code
...
...

“A method has conditional behavior that does not make clear the normal path
of execution. Use guard clauses for all the special cases.” [Fowler, page 250]

Many people have learned a “rule” that functions should have only one exit
point, which should be at the end. This rule originates from the early days of
structured programming. There’s a good reason for the rule: Early exits can
lead to errors if the programmer isn’t careful with them.
But remember, the more fundamental rules are to communicate with other
people, and to reduce complexity. Sometimes, sticking to no-early-returns
leads to awkward code that goes against the spirit of the fundamental routines.
Using a guard clause with an early exit can sometimes clarify the principal
purpose of a routine.

Copyright 2006 The MathWorks, Inc. 42

Mapping Toolbox Case Study

Here’s a case study from my own experience working on a function in Mapping
Toolbox. It pulls together version control, unit testing, cyclomatic complexity,
and refactoring.

Copyright 2006 The MathWorks, Inc. 43

Struggling with Software Development

You’re an engineer. You rely on software to do your job. Maybe you write that
software, or maybe your supervise someone else on your team who does.
Recurring problems with the software frustrate you and make you less
effective. But you really don’t want programming to take over as your main job
or concern.
What do you do?

Copyright 2006 The MathWorks, Inc. 44

Learning and Applying Basic Software
Tools

There are simple tools and techniques considered essential by all professional
software developers. They have nothing to do with the latest fashions in
object-oriented this-or-that language. They aren’t taught in the engineering
programming course (or maybe not in any course).

But they’re not that complicated, and you can learn them. Learn one
technique, and it’ll help. Learn several, and regularly apply them to your work,
and you may soon feel like you are controlling your software project instead of
the other way ‘round.

Copyright 2006 The MathWorks, Inc. 45

Taking Control of Your Code

Version Control

Unit Tests

Quality Metrics

Code Smells

Refactoring

Copyright 2006 The MathWorks, Inc. 46

Recommended Reading

There are many excellent books about the craft of software development. I’ve
chosen a very small number to recommend here. These books
• Are language- and environment-agnostic
• Can be read in part or in whole
• Have good bibliographies and recommended reading lists if you want to learn
more
Also, these are the books I relied upon most heavily to prepare this
presentation. All three are widely read and studied at The MathWorks.
• Steve McConnell. Code Complete: A Practical Handbook of Software
Construction, 2nd edition. Microsoft Press. 2004.
• Andrew Hunt and David Thomas. The Pragmatic Programmer: From
Journeyman to Master. Addison-Wesley. 2000.
• Martin Fowler. Refactoring: Improving the Design of Existing Code. Addison-
Wesley. 1999.
You might also want to look at Software Carpentry, the open-source lecture
materials for an extensive course covering these topics and more:
www.swc.scipy.org/

Copyright 2006 The MathWorks, Inc. 47

STEVE EDDINS, Ph.D.
steve.eddins@mathworks.com
http://blogs.mathworks.com/steve
508.647.7374 Fax 508.647.7001

www.mathworks.com
The MathWorks, Inc. 3 Apple Hill Drive Natick, MA 01760-2098 USA

