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Abstract
The reduced row echelon form rref (A) has traditionally been used for classroom ex-

amples : small matrices A with integer entries and low rank r. This paper creates a
column-row rank-revealing factorization A = CR, with the first r independent columns
of A in C and the r nonzero rows of rref (A) in R. We want to reimagine the start of a
linear algebra course, by helping students to see the independent columns of A and the
rank and the column space.

If B contains the first r independent rows of A, then those rows of A = CR produce
B = W R. The r by r matrix W has full rank r, where B meets C. Then the triple
factorization A = CW −1B treats columns and rows of A (C and B) in the same way.
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1 Introduction

Matrix factorizations like A = LU and A = UΣV T have become the organizing principles
of linear algebra. This expository paper develops a column-row factorization A = CR =
(m × r) (r × n) for any matrix of rank r. The matrix C contains the first r independent
columns of A : a basis for the column space. The matrix R contains the nonzero rows of the
reduced row echelon form rref (A). We will put R in the form R =

[

I F
]

P , with an

r by r identity matrix that multiplies the r columns of C. Then A = CR =
[

C CF
]

P
expresses the n − r remaining (dependent) columns of A as combinations CF of the r
independent columns in C. When those independent columns don’t all come first in A, P
permutes those columns of I and F into their correct positions.

The example in Section 3 shows how invertible row operations find the first r indepen-
dent columns of A. For a large matrix this row reduction is expensive and numerically
perilous. But Section 6 will explain the value of an approximate CR or CW −1B factor-
ization of A. This is achievable by randomized linear algebra.

The key point is : A = CR is an “interpolative decomposition” that includes r actual
columns of A in C. A more symmetric two-sided factorization A = C W −1B also includes
r actual rows of A in B. The r by r matrix W lies at the “intersection” inside A of the
columns of C with the rows of B. The mixing matrix W −1 removes that repetition to
produce W −1B = R. If P = I then we are seeing block elimination with W as the block
pivot :

A =

[

W H
J K

]

=

[

W

J

]

W −1
[

W H
]

= C W −1B

That matrix W is invertible, where a row basis B meets the column basis C. For large
matrices, a low rank version A ≈ CUB can give a high quality approximation.
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2 LU and CR Elimination

2 LU Elimination

This is familiar to all numerical analysts. It applies best to an invertible n by n matrix
A. A typical step subtracts a multiple ℓij of row j from row i, to produce a zero in the ij
position for each i > j. A column at a time, going left to right, all entries below the main
diagonal become zero. LU elimination arrives at an upper triangular matrix U , with the
n nonzero pivots on its main diagonal.

We could express that result as a matrix multiplication EA = U . The lower triangular
matrix E is the product of all the single-step elimination matrices Eij . A more successful
idea—which reverses the order of the steps as it inverts them—is to consider the matrix
L = E−1 that brings U back to A. Then EA = U becomes A = LU .

In this order, the lower triangular L contains all the multipliers ℓij exactly in their
proper positions. The pattern is only upset if any row exchanges become necessary to avoid
a zero pivot or to obtain a larger pivot (and smaller multipliers). If all row exchanges are
combined into a permutation matrix, elimination factors that row-permuted version of A
into LU .

3 CR Elimination

Start now with an m by n matrix A of rank r. Elimination will again proceed left to right,
a column at a time. The new goal is to produce an r by r identity matrix I. So each
pivot row in turn is divided by its first nonzero entry, to produce the desired 1 in I. Then
multiples of that pivot row are subtracted from the rows above and below, to achieve the
zeros in that column of I.

If at any point a row is entirely zero, it moves to the bottom of the matrix. If a
column is entirely zero except in the rows already occupied by earlier pivots, then no pivot
is available in that column—and we move to the next column. The final result of this
elimination is the m by n reduced row echelon form of A. We denote that form by R0 :

R0 = rref(A) =

[

I F

0 0

]

P
r rows

m − r rows
(1)

r n − r columns

The n by n permutation matrix P puts the columns of Ir×r into their correct positions,
matching the positions of the first r independent columns of the original matrix A.

A =





1 2 3 4
1 2 3 5
2 4 6 9



 →





1 2 3 4
0 0 0 1
0 0 0 0



 →





1 2 3 0
0 0 0 1
0 0 0 0



 = R0. (2)

C contains columns 1 and 4 of A and R contains rows 1 and 2 of R0. Then CR contains
the four columns of A : column 1, 2(column 1), 3(column 1), column 4. Also

R0P
T =





1 2 3 0
0 0 0 1
0 0 0 0













1 0 0 0
0 0 1 0
0 0 0 1
0 1 0 0









=





1 0 2 3
0 1 0 0
0 0 0 0



 =

[

I F

0 0

]

. (3)
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All permutations have P TP = I. So multiplying equation (3) by P and removing row 3
produces R =

[

I F
]

P .
Usually the description of elimination stops at R0. There is no connection to a

matrix factorization A = CR. And the matrix F in the columns without pivots is given no
interpretation. This misses an opportunity to understand more fully the rref algorithm
and the structure of a general matrix A. We believe that A = CR is a valuable idea in
teaching linear algebra [10] : a good way to start.

4 The Factorization A=CR : m by r times r by n

The matrix C is easy to describe. It contains the first r independent columns of A. The
positions of those independent columns are revealed by the identity matrix I in rref (A)
and by P (the permutation). All other columns of A (with rank r) are combinations
of these r columns. Those combinations come from the submatrix F . The matrix R is
the reduced row echelon form R0 = rref(A) without its zero rows :

R =
[

I F
]

P and A = CR =
[

C CF
]

P (4)

Again, the matrix F tells how to construct the n − r dependent columns of A from
the r independent columns in C. This interpretation is often missing from explanations
of rref—it comes naturally when the process is expressed as a factorization. C gives the
independent columns of A and CF gives the dependent columns. P orders those n columns
correctly in A.

Example 2 A is a 3 by 3 matrix of rank 2. Column 3 is − column 1 + 2(column 2),
so F contains −1 and 2. This example has P = I, and the zero row of R0 is gone :

A =





1 2 3
4 5 6
7 8 9



 =





1 2
4 5
7 8





[

1 0 −1
0 1 2

]

= CR = C
[

I F
]

The first two columns of A are a basis for its column space. Those columns are in C.
The two rows of R are a basis for the row space of A. Those rows are independent
(they contain I). They lie in that row space because R = (CTC)−1CTA. They span the
row space because A = CR expresses every row of A as a combination of the rows of R.

Here are the steps to establish A = CR. We know that an invertible elimination matrix E
(a product of simple steps) gives EA = R0 = rref (A). Then A =E−1R0 =(m×m)(m×n).
Drop the m − r zero rows of R0 and the last m − r columns of E−1. This leaves A =
C

[

I F
]

P , where the identity matrix in R allows us to identify C in the columns of E−1.
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The factorization A = CR reveals the first great theorem of linear algebra.

The column rank r equals the row rank.

Proof The r rows of R are independent (from its submatrix I). And all rows of A are
combinations of the rows of R (because A = CR). Note that the rows of R belong to the
row space of A because R = (CTC)−1CTA. So the row rank is r.

The A = CR factorization reveals all these essential facts and more. The equation
Ax = 0 becomes easy to solve, producing a convenient basis matrix N for the nullspace
of A (dimension n−r). Recalling that P P T = I, here is AN =zero matrix (m by n−r) :

A =
[

C CF
]

P times N = P T

[

−F
In−r

]

equals − CF + CF = 0 (5)

In Example 2 with P = I, N has one column x =
[

−F 1
]T

=
[

1 −2 1
]T

.
The columns x of N are the “special solutions” to Ax = 0, because of the submatrix
In−r : One free variable equals 1 and the other free variables in x are zero.

This analysis of the A = CR factorization was new to us. In a linear algebra course,
the factorization answers all questions about A in a natural order. It allows early examples
of the column space of A and the crucial ideas of linear independence and basis. Those
ideas appear first in examples like the matrix A above (before the student has a system for
computing C). That system comes later—it is the elimination that produces R0 = rref(A)
and then R, with their submatrix I that identifies the columns that go into C.

The goal is to start a linear algebra class with simple examples of independence and
rank and matrix multiplication. Integer matrices A reveal the idea of independence before
the definition. And the matrix rref(A) now has a meaning ! The identity matrix locates
the first r independent columns (a basis for the column space of A). And F (r by n − r)
gives the combinations of those r columns that produce the n − r dependent columns of
A.

5 The Magic Factorization A = CW
−1

B

The factorization A = CR has useful properties, but symmetric treatment of columns and
rows is not one of them. The rows of R were constructed by elimination. They identify the
independent columns in C. There is a closely related factorization that takes r independent
rows (as well as r independent columns) directly from A. Now an r by r submatrix W

appears both in the column matrix C and the row matrix B : W is the “intersection” of
r rows with r columns. So a factor W −1 must go in between C and B :

A = CR = CW −1B as in A =





1 2 3
4 5 6
7 8 9



=





1 2
4 5
7 8





[

1 2
4 5

]

−1 [

1 2 3
4 5 6

]
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The first r independent columns and independent rows of A meet in W . A key point is
that W is invertible. By interposing W −1 between C and B, the factorization A=CW −1B
succeeds with R replaced by W −1B.

Notice that W R =

[

1 2
4 5

] [

1 0 −1
0 1 2

]

=

[

1 2 3
4 5 6

]

= B. (6)

Theorem 1. Suppose C contains the first r independent columns of A, with r = rank(A).
Suppose R contains the r nonzero rows of rref(A). Then A = CR.

Now suppose the matrix B contains the first r independent rows of A. Then W is
the r by r matrix where C meets B. If we look only at those r rows of A = CR, we see
B = W R. Since B and R both have rank r, the square matrix W must have rank r and
it is invertible.

In case A itself is square and invertible, we have A = C = B = W . Then the
factorization A = CW −1B reduces to A = WW −1W . For a rectangular matrix with
independent columns and rows coming first in W , we see columns times W −1 times rows :

A =

[

W H
J K

]

=

[

W
J

]

W −1
[

W H
]

= CW −1B (7)

All this is the work of a “coordinated” person. If we ask an algebraist (as we did), the
factors B and W −1 and C become coordinate-free linear maps that reproduce A :

A : Rn
→ Rn/kernel(A) → image(A) → Rm (8)

The map in the middle is an isomorphism between r-dimensional spaces. But the nat-
ural bases are different for those two spaces. The columns of C give the right basis for
image(A) = “column space”. The rows of B are natural for the dual space (row space)
Rn/kernel(A). So there is an invertible r by r matrix—a change of basis—when we intro-
duce coordinates. That step is represented by W −1. The invertibility of W follows from
the algebra.

When we verify equation (8) in matrix language (with coordinates), the invertibility
of the column-row intersection W will be explicitly proved. Here is that additional proof.

A = any matrix of rank r m × n

C = r independent columns of A m × r

B = r independent rows of A r × n

W = intersection of C and B r × r

Let A =

[

W H

J K

]

r
m − r

r n − r

C =

[

W

J

]

B =
[

W H
]

Theorem 2. The r by r matrix W also has rank r. Then A = CW −1B.
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1. Combinations V of the rows of B must produce the dependent rows in
[

J K
]

Then
[

J K
]

=V B =
[

V W V H
]

for some matrix V and C =

[

I

V

]

W

2. Combinations T of the columns of C must produce the dependent columns in

[

H

K

]

Then

[

H

K

]

= C T =

[

W T

JT

]

for some matrix T and B = W
[

I T
]

3. A =

[

W H
V W V H

]

=

[

W WT
V W V WT

]

=

[

I

V

][

W
][

I T
]

= CW −1B

Each step 1, 2, 3 proves again that W is invertible. If its rank were less than r, then W
could not be a factor of C or B or A. In case C and B are not in the first r columns and

rows of A, permutations PR and PC will give PR A PC =

[

W H
J K

]

and the proof goes

through.

Uniqueness The columns of C are a basis for the column space of A. Then the columns
of R contain the unique coefficients that express each column of A in that basis : A = CR.
But W and B are not unique. They can come from any r independent rows of A.

This is consistent with (and proves !) the uniqueness of the reduced row echelon form
R0, and the non-uniqueness of the steps from A to R0.

A = CR and A = CW −1B both lead to explicit expressions for the pseudoinverse A+.
Those factors have full rank, so we know that A+ = R+C+ and A+ = B+WC+. These
factors are one-sided inverses as in R+ =RT(RRT)−1 and C+ =(CTC)−1CT.

We don’t know the full history of this column-row factorization of A into
CW −1B. But an excellent paper by Hamm and Huang [3] extends the theory to the
general case when W −1 becomes a pseudoinverse. They analyze CUR approximations
for large matrices (see below), and they have also provided a valuable set of references—
including the 1956 paper [8] by Roger Penrose. That paper followed his 1955 introduction
of the Moore-Penrose pseudoinverse.

6 Applications to Large Matrices

Our starting point for A = CR has been its connection to the reduced row echelon form
R0 = rref(A). That is traditionally a classroom construction, and classrooms are usually
limited to small matrices. But the idea of using actual columns and rows of the matrix
A can be highly attractive. Those vectors have meaning. They are often sparse and/or
nonnegative. They reflect useful properties that we wish to preserve in approximating A.
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A persuasive and widely read essay by Lee and Seung [5] made this point strongly.
And there has been good progress on the key decision : Which k columns and k rows to
choose ? It is understood that for large matrices, k may be much less than the rank r of
A.

An early start was the analysis of “pseudoskeleton approximations” to an exact skeleton
A = CW −1B. This can be accurate (provided there exists a rank k matrix close to A).
The optimal choice of columns and rows for C and B is connected in [2] to finding a
subdeterminant of maximum volume.

Interpolative decomposition has become part of randomized numerical linear algebra.
Exact factors C, W, B would be submatrices of A and require no new storage.
But if A itself is very large, its size will have to be reduced. The computation often
samples the columns of A by Y = AG, for an n by k Gaussian random matrix G. Then
a crucial step is to produce an orthonormal basis Q for that k-dimensional approximate
column space (at reasonable cost). This is Gram-Schmidt with column pivoting, aiming
to put the most important columns first : AP = QR.

The whole randomized algorithm is beautifully presented by Martinsson in [6] and in
the extended survey [7] by Martinsson and Tropp. When the singular values of A decay
rapidly, these algorithms succeed with a moderate choice of k—the computational rank
that replaces the actual rank of A.

7 Implementation

An rref function has always been part of MATLAB. It was intended for academic use
in computer experiments supplementing a traditional linear algebra course, and has been
largely ignored by most users for many years. We were pleasantly surprised when the
function proved to be exactly what was needed to compute the A = CR and ultimately
the A = C W −1B factorizations.

7.1 rref

This description of rref was probably written in the 1980’s. It is still valid today.

R = rref(A) produces the reduced row echelon form of A.

[R,jb] = rref(A) also returns a vector, jb, so that:

r = length(jb) is this algorithm’s idea of the rank of A,

x(jb) are the bound variables in a linear system, Ax = b,

A(:,jb) is a basis for the range of A,

R(1:r,jb) is the r-by-r identity matrix.

An important output is the indices jb of the leading r independent columns of A. The
statement

[~,jb] = rref(A)
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ignores the echelon form and just retains the column indices.

7.2 cr and cab

We have developed two new functions, cr and cab. The function cr produces two matrices.
The first is C, a basis for the column pace. The second output is R, the rref of A with any
zero rows removed.

[C,R] = cr(A)

rref is used once by cr to find both C and R. Here is the code for cr.

[R,jb] = rref(A);

r = length(jb); % r = rank.

R = R(1:r,:); % R(:,jb) == eye(r).

C = A(:,jb)

The function cab produces three matrices, C, W and B, with

[C,W,B] = cab(A) or [C,W,B,cols,rows] = cab(A)

C = A(:,cols) is a subset of the columns and forms a basis for the column space. The
same C is produced by cr. B = A(rows,:) is a subset of the rows and forms a basis for
the row space. And W = A(rows,cols) is the set intersection of C and B. The original A

can be reconstructed with

A = C*inv(W)*B

Moreover the rank of A is r = rank(A) = length(cols) = length(rows).

Consequently W is square and its size is r -by- r

rref is used twice by cab. The first use finds a basis for the column space. The second
use is with the transpose of A and finds a basis for the row space. The echelon forms
themselves are discarded; only the pivot indices are retained. Here is the code for cab.

[~,cols] = rref(A); % Column space

C = A(:,cols);

[~,rows] = rref(A’); % Row space

B = A(rows,:);

W = A(rows,cols); % Intersection

The theorem that the column space and the row space have the same dimension implies
that cols and rows have the same length and ultimately that W is square and nonsingular.
Its size is the rank.
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7.3 Gauss-Jordan

The algorithm used by rref to is known in numerical analysis as Gauss-Jordan elimination.
When Gauss-Jordan is applied to an augmented matrix [A b], it solves the linear system
A*x = b. The Gaussian elimination algorithm is less work. It does not zero elements
above the pivot. It stops with an upper triangular factor U and then solves the modifed
augmented system by back substitution.

Most modern computers have a fused multiply-add instruction, FMA, that multiplies two
floating point values and then adds a third value to the result in one operation. For an n-
by-n system, Gauss-Jordan requires about (1/2)*n^3 FMAs, while Gaussian elimination
requires less, only (1/3)*n^3 FMAs. This is one of the reasons why the numerical linear
algebra community has been less interested in rref.

7.4 Examples

Magic squares provide good examples of our factorizations. An n-by-n magic square is a
matrix whose elements are the integers from 1 to n2 and whose row sums, column sums,
and sums along both principal diagonals are all the same magic sum. Many magic squares
are rank deficient.

A 4-by-4 magic square is one of the mathematical objects in Melencolia I, a 1514
engraving by the German Renaissance artist Albrecht Dürer.

A =

16 3 2 13

5 10 11 8

9 6 7 12

4 15 14 1

This matrix is rank deficient, but the linear dependencies are not obvious. The rank is
revealed to be three by the cr function.

[C,R] = cr(A)

C =

16 3 2

5 10 11

9 6 7

4 15 14

R =

1 0 0 1

0 1 0 -3

0 0 1 3
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The matrix R is the rref of A with a zero row removed.

Equal treatment of rows and columns is provided by the cab function.

[C,W,B] = cab(A) = C*inv(W)*B.

C =

16 3 2

5 10 11

9 6 7

4 15 14

W =

16 3 2

5 10 11

9 6 7

B =

16 3 2 13

5 10 11 8

9 6 7 12

The Franklin semimagic square is attributed to Benjamin Franklin in c.1752 [1]. Its
rows and columns all have the required magic sum, but the diagonals do not, so it isn’t fully
magic. However, many other interesting submatrices are magic, including bent diagonals
and any eight elements arranged symmetrically about the center.

A =

52 61 4 13 20 29 36 45

14 3 62 51 46 35 30 19

53 60 5 12 21 28 37 44

11 6 59 54 43 38 27 22

55 58 7 10 23 26 39 42

9 8 57 56 41 40 25 24

50 63 2 15 18 31 34 47

16 1 64 49 48 33 32 17

It is hard to think of Franklin’s square as a linear transformation, but cab can still compute
its rank.

[C,W,B] = cab(A)

C =

52 61 4

14 3 62
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53 60 5

11 6 59

55 58 7

9 8 57

50 63 2

16 1 64

W =

52 61 4

14 3 62

53 60 5

B =

52 61 4 13 20 29 36 45

14 3 62 51 46 35 30 19

53 60 5 12 21 28 37 44

So the rank is three. And, C*inv(W)*B is within roundoff error of A.

test = C*inv(W)*B

test =

52.00 61.00 4.00 13.00 20.00 29.00 36.00 45.00

14.00 3.00 62.00 51.00 46.00 35.00 30.00 19.00

53.00 60.00 5.00 12.00 21.00 28.00 37.00 44.00

11.00 6.00 59.00 54.00 43.00 38.00 27.00 22.00

55.00 58.00 7.00 10.00 23.00 26.00 39.00 42.00

9.00 8.00 57.00 56.00 41.00 40.00 25.00 24.00

50.00 63.00 2.00 15.00 18.00 31.00 34.00 47.00

16.00 1.00 64.00 49.00 48.00 33.00 32.00 17.00

Rounding test to the nearest integers reproduces Franklin’s magic square exactly.
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