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AN ALGORITHM FOR GENERALIZED MATRIX
EIGENVALUE PROBLEMS*

C. B. MOLER AND (3. W. STEWART

Abstract. A new method, called the QZ algorithm, is presented for the solution of the matrix
eigenvalue problem Ax 2Bx with general square matrices A and B. Particular attention is paid to the
degeneracies which result when B is singular. No inversions of B or its submatrices are used. The
algorithm is a generalization of the QR algorithm, and reduces to it when B I. Problems involving
higher powers of A are also mentioned.

1. Introduction. We shall be concerned with the matrix eigenvalue problem of
determining the nontrivial solutions of the equation

Ax ),Bx,
where A and B are real matrices of order n. When B is nonsingular this problem is
formally equivalent to the usual eigenvalue problem B- lAx 2x.

When B is singular, however, such a reduction is not possible, and in fact the
characteristic polynomial det (A 2B) is of degree less than n, so that there is not
a complete set of eigenvalues for the problem. In some cases the missing eigenvalues
may be regarded as "infinite." In other cases the entire problem may be poorly
posed. The term infinite eigenvalue is justified by the fact that if B is perturbed
slightly so that it is no longer singular, there may appear a number of large eigen-
values that grow unboundedly as the perturbation is reduced to zero. However,
if det (A 2B) vanishes identically, say when A and B have a common null space,
then any ; may be regarded as an eigenvalue. Such problems have unusually
pathological features, and we refer to them as "ill-disposed" problems.

In numerical work the .sharp distinction between singular and nonsingular
matrices is blurred, and the pathological features associated with singular B
carry over to the case of nearly singular B. The object of this paper is to describe
an algorithm for computing the eigenvalues and corresponding eigenvectors that
is unaffected by nearly singular B. The algorithm, the heart of which we call the
QZ algorithm, is essentially an iterative method for computing the decomposition
contained in the following theorem [10].

THEOREM. There are unitary matrices Q and Z so that QAZ and QBZ are both
upper triangular.

We say that the eigenvalue problems QAZy 2QBZy and Ax 2Bx are
unitarily equivalent. The two problems obviously have the same eigenvalues, and
their eigenvectors are related by the equation x Zy.
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242 C. B. MOLER AND G. W. STEWART

The algorithm proceeds in four stages. In the first, which is a generalization
of the Householder reduction of a single matrix to Hessenberg form [4], [5], A is
reduced to upper Hessenberg form and at the same time B is reduced to upper
triangular form. In the second step, which is a generalization of the Francis implicit
double shift QR algorithm [3], [8], A is reduced to quasi-triangular form while the
triangular form of B is maintained. In the third stage the quasi-triangular matrix is
effectively reduced to triangular form and the eigenvalues extracted. In the fourth
stage the eigenvectors are obtained from the triangular matrices and then trans-
formed back into the original coordinate system.

The transformations used in reducing A and B are applied in such a way that
Wilkinson’s general analysis of the roundoff errors in unitary transformations 11
shows that the computed matrices are exactly unitarily equivalent to slightly
perturbed matrices A + E and B + F. This means that the computed eigenvalues,
which are the ratios of the diagonal elements of the final matrices, are the exact
eigenvalues of the perturbed problem (A + E)x 2(B + F)x. If an eigenvalue is
well-conditioned in the sense that it is insensitive to small perturbations in A and
B (see [10] for a detailed analysis), then it will be computed accurately. This
accuracy is independent of the singularity or nonsingularity of B.

The use of unitary transformations in the reduction also simplifies the problem
of convergence: a quantity may be set to zero if a perturbation of the same size
can be tolerated in the original matrix.

Our computer program does not actually produce the eigenvalues 2 but
instead returns and/3, the diagonal elements of the triangular matrices QAZ
and QBZ. The divisions in 2 // become the responsibility of the program’s
user. We emphasize this point because the and/ contain more information
than the eigenvalues themselves.

Since our algorithm is an extension of the QR algorithm, the well-known
properties of the QR algorithm apply to describe the behavior of our algorithm.

In their survey article [9], Peters and Wilkinson describe another approach
for the case when B is nearly singular. In their method one computes an approxi-
mate null space for B and removes it from the problem. The technique is reapplied
to the deflated problem, and so on until a well-conditioned problem is obtained.
The method has the crucial drawback that one must determine the rank of B. If a
wrong decision is reached, the well-conditioned eigenvalues may be seriously
affected. A similar algorithm for rectangular matrices is given in [13].

The special case where A is symmetric and B is positive definite has been
extensively treated. For the case of well-conditioned B the "Cholesky-Wilkinson"
method [6] enjoys a well deserved popularity. A modification of this algorithm
for band matrices is given by Crawford [1]. A variant of the Peters-Wilkinson
method for nearly semidefinite B has been given by Fix and Heiberger [2]. Although
our method does not preserve symmetry and is consequently more time consuming
than these algorithms, its stability may make it preferable when B is nearly semi-
definite.

Our algorithm can also be used to solve "2-matrix" problems of the form

(2"C,. + 2"- 1C,._ + + Co)x 0

by forming the generalized block companion matrices. For example, when r 3,
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AN ALGORITHM 243

C2 C C0 C3 0 0

Note that neither Cr nor Co is assumed to be nonsingular.

2. Reduction to Hessenberg-triangular form. In this section we shall give an
algorithm whereby A is reduced to upper Hessenberg form and simultaneously B
is reduced to triangular form. While a treatment of the reductions in this and the
following sections can be given in terms ofstandard plane rotations and elementary
Hermitian matrices, we find it convenient from a computational point of view to
work exclusively with a modified form of the elementary Hermitians. Accordingly,
we introduce the following notation.

By (k) we mean the class of symmetric, orthogonal matrices of the form

I / t)uT

where vTu --2, V is a scalar multiple of u, only components k,k + 1,...,
k + r of u are nonzero, and u 1. Given any vector x, it is easy to choose a
member Q of 3gr(k) so that

Ox x + (urx)v
has its k + 1, , k + r 1 components equal to zero, its kth component changed
and all other components unchanged. Since uk 1, the computation of Qy for any
y requires only 2r 1 multiplications and 2r 1 additions. (In particular, use of
a matrix in 3te2 requires only 3 multiplications instead ofthe 4 required by a standard
plane rotation.)

For the most part, we shall use only matrices in ’ and 3- When a matrix
Q in 3(k) premultiplies a matrix A, only rows k, k + 1, and k + 2 in QA are
changed. If the elements k, k + 1, and k + 2 in a column of A are zero, they remain
zero in QA. Likewise, if Z 3(k), only columns k, k + 1, and k + 2 are changed
in AZ. If some row has elements k, k + 1, and k + 2 zero, then they remain zero
in AZ. Similar considerations hold for the class 2.

All our transformations will be denoted by Q’s and Z’s with various subscripts.
The Q’s will always be premultipliers, that is, row operations. The Z’s will always
be postmultipliers, or column operations. The letter Q is being used in its traditional
role to denote orthogonal matrices. The letter Z was chosen to denote orthogonal
matrices which introduce zeros in strategic locations.

The first step in the reduction is to reduce B to upper triangular form by
premultiplication by Householder reflections. The details of this reduction are
well known (e.g., see [4], [11]) and we confine ourselves to a brief description to
illustrate our notation. At the kth stage of the reduction (illustrated below for
k 3 and n 5), the elements below the first k 1 diagonal elements of B are
zero

X X X X X

0 X X X X

0 0 x x x

0 0 X X X

0 0 X X X
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244 . B. MOLER AND G. W. STEWART

Each x represents an arbitrary nonzero element. Each x represents an element to
be annihilated in the next step. A matrix Qk Yf-k/ (k) is chosen to annihilate
bk/ ,k, bk/ 2,k,’’’, b,,,k, and B is overwritten by QkB, giving a matrix of the form
illustrated below.

X X X X X

0 X X X X

0 0 x x x

0 0 0

0 0 0

X X

X X

This process is repeated until k n- 1. Of course A is overwritten by
Qn_IQ._2...Q1A.

After this reduction, A and B have the forms

A B

X X X X X X X X X X

x x x x x 0 x x x x

x x x x x 0 0 x x x

X X X X X

X X X X X

0 0 0 x x

0 0 0 0 x

The problem now is to reduce A to upper Hessenberg form while preserving
the triangularity of B. This is done as follows (for k 5). First Q 3f2(4 is deter-
mined to annihilate as. The matrices QA and QB, which overwrite A and B, then
have the forms

X X X X X X X X X X

x x x x x 0 x x x x

x x x x x 0 0 x x x

x x x x x 0 0 0 x x

0 x x x x 0 0 0 x x

The transformation has introduced a nonzero element on the (5,4)-position of B.
However, a Z ’2(4) can be used to restore the zero without disturbing the zero
introduced in A. The elements of A can be annihilated in the following order"

X X X X X

X X X X X

3X X X X X

X2 X X X X

X X4 X6 X X
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AN ALGORITHM 245

As each element of A is annihilated, it introduces a nonzero element on the sub-
diagonal of B, which is immediately annihilated by a suitably chosen Z. The entire
algorithm, including the Householder triangularization of B, may be summed up as
follows:

1. Fork- 1,2,...,n- 1,
(i) choose Qk -k+ l(k) to annihilate bk + 1,k, bk + 2,k, "’", b,,k
(ii) B - QkB, .4 - QkA.

2. For k-1,2,...,n-2,
(i) forl=n- 1, n- 2,-..,k 4- 1,

(a) choose Qkl 32(/) to annihilate
(b) A 2,A,
(c) choose Zkl 2(/) to annihilate bl + 1,1;
(d) B - BZkl A - AZkl.

The complete reduction requires about -n3 multiplications, n3 additions
and n2 square roots. If eigenvectors are also to be computed, the product of the Z’s
must be accumulated. This requires an additional -32n3 multiplications and n3

additions. The product of the Q’s is not required for the computation of eigen-
vectors.

3. The explicit QZ step. In this and the next section we assume that A is
upper Hessenberg and B is upper triangular. In this section we shall propose an
iterative technique for reducing A to upper triangular form while maintaining the
triangularity of B. The idea of our approach is to pretend that B is nonsingular and
examine the standard R algorithm for C AB-1. The manipulations are then
interpreted as unitary equivalences on A and B.

Specifically, suppose that one step of the QR algorithm with shift a is applied to
C. Then Q is determined as an orthogonal transformation such that the matrix

(3.1) R Q(C aI)

is upper triangular. The next iterate C’ is defined as

C’= RQr + aI =- QCQT

and is known to be upper Hessenberg. If we set

A’ QAZ and B’ QBZ,

where Z is any unitary matrix, then

A’B’- QAZZTB 1QT QAB- 1QT C’..

The matrix Z can be chosen so that B’ is upper triangular. Then, since A’ C’B’
is the product of a Hessenberg and a triangular matrix, it is also upper Hessenberg.
This insures that the nice distribution of zeros, introduced by the algorithm of 2,
is preserved by the QZ step. Thus a tentative form of our algorithm might read:

1. Determine Q so that QC is upper triangular.
2. Determine Z so that QAZ is upper Hessenberg and QBZ is upper triangular.
3. A - QAZ, B - QBZ.

The problem is then to give algorithms for computing Q and Z which do not
explicitly require C AB-1.
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246 C. B. MOLER AND G. W. STEWART

The determination Q is relatively easy. For from (3.1) and the definition of C
it follows that

(3.2) Q(A aB)= RB =_ S.

Since R and B are upper triangular, so is S. Thus Q is the unitary matrix that
reduces A -aB to upper triangular form. Since A aB is upper Hessenberg, Q
can be expressed in the form

(3.3) Q= Q.-,Q.-2-..Q,, whereQk

To calculate Z we apply Q in its factored form (3.3) to B and determine Z in a
factored form so that B stays upper triangular. Specifically, Q1B has the form
(n 5)

X X X X X

X X X X X

0 0 x x x

0 0 0 x x

0 0 0 0 x

If Q B is postmultiplied by a suitable Z off2(1), the nonzero element below the
diagonal can be removed. Similarly, Q2QBZx has the form

X X X X X

X X X X

X X X X

0 0 0 x x

0 0 0 0 x

and the offending nonzero element can be removed by a Z2 3/f2(2). Proceeding
in this way, we construct Z in the form

Z ZlZ2 Z 1, where Zk 3gz(k).

Although QBZ is upper triangular, it is not at all clear that QAZ is upper Hessen-
berg. To see that it is, rewrite (3.2) in the form

(3.4) QAZ SZ + aQBZ.

From the particular form ofZ and the fact that S is upper triangular, it follows that
SZ is upper Hessenberg. Thus (3.4)expresses QAZ as the sum of an upper Hessen-
berg and an upper triangular matrix. In fact, (3.4) represents a computationally
convenient form for computing QAZ.

We summarize as follows.
1. Determine Q Q._ 1Qn-2"" Q1 (Qk 3{’2(k)) so that S Q(A- aB) is

upper triangular.
2. Determine Z ZZ2 Z._ (Zke 3g2(k)) so that B’= QBZ is upper

triangular.
3. A’ SZ + aB’.
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AN ALGORITHM 247

If this algorithm is applied iteratively with shifts a a, o’2,"’, there result
sequences of matrices A 1, Az, and B a, B2, satisfying

A + QvAZ, B+ Q,BvZ.

The matrices A are upper Hessenberg and the B are upper triangular. Moreover,
if Ba is nonsingular, then the matrices C A,,B- are the matrices which would
have been obtained by applying the standard QR algorithm with shifts a a, a2,
to Ca AaB- a. As C tends to upper triangular form, so must A, since B-a is
upper triangular.

Most of the properties of the QR algorithm carry over to the QZ algorithm.
The eigenvalues will tend to appear in descending order as one proceeds along the
diagonal. The convergence of a) to zero may be accelerated by employing one
of the conventional shiftin strategies. Once a becomes negligible one can’n,n-

deflate the problem by workin with the lcadin principal submatriccs of order
n If some othcF subdiaonal clement of Av, say ’ becomes negligibletl,l- 1,

one can effect a further savings by working with rows and columns through n.
Because we have used unitary transformations, an element of A or B can be
regarded as negligible if a perturbation of the same size as the element can be
tolerated in A or B.

The algorithm given above is potentially unstable. If a is large compared with
A and B, the formula (3.4) will involve subtractive cancellation and A’ will be
computed inaccurately. Since the shift a approximates the eigenvalue currently
being found and the problem may have very large eigenvalues, there is a real
possibility of encountering a large shift. Fortunately the large eigenvalues tend to
be found last so that by the time a large shift emerges the small eigenvalues will
have been computed stably. (The large eigenvalues are of course ill-conditioned and
cannot be computed accurately.) To be safe one might perform the first few
iterations with a zero shift in order to give the larger eigenvalues a chance to
percolate to the top.

4. Implicit shifts. The potential instability in the explicit algorithm results
from the fact that we have used formula (3.4) rather than unitary equivalences to
compute A’. One way out of this difficulty is to generalize the implicit shift method
for the QR algorithm to the QZ algorithm so that both A’ and B’ are computed by
unitary equivalences. The implicit shift technique has the additional advantage that
it can be adapted to perform two shifts at a time. For real matrices this means that
a double shift in which the shifts are conjugate pairs can be performed in real
arithmetic.

Since we are primarily interested in real matrices, we shall concentrate on
double shifts. The method is based on the following observation. Suppose that A
is upper Hessenberg and B is upper triangular and nonsingular. Then if Q and Z
are unitary matrices such that QAZ is upper Hessenberg and QBZ is upper
triangular, then Q is determined by its first row. In fact, AB- and QAB- aQn are
both upper Hessenberg, so that, by the theorem in [11, p. 352], Q is determined by
its first row.

Thus we must do two things. First, find the first row of Q. Second, determine
Q and Z so that Q has the correct first row, QAZ is upper Hessenberg, and QBZ
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248 C. B. MOLER AND G. W. STEWART

is upper triangular. The first part is relatively easy. The first row that would be
obtained from a double shifted QR applied to AB- 1. Since A is upper Hessenberg
and B upper triangular, it is easy to calculate the first two columns of AB-1. But
these, along with the shifts, completely determine the first row of Q. Only non-
singularity of the upper 2 x 2 submatrix of B is actually required here. If either
b or b22 is too small, so that this submatrix is nearly singular, a type of deflation
can be carried out. We shall return to this point later.

The second part is a little more difficult, and is really the crux of the algorithm
since it retains the Hessenberg and triangular forms. Only the first three elements
of the first row of Q are nonzero. Thus, if Q1 is a matrix in W3(1) with the same
first row of Q, then QIA and Q1B have the following forms (when n 6):

X X X X X X X X X X X X

X X X X X X X2 X X X X X

X X X X X X X X X X X X

0 0 x x x x 0 0 0 x x x

0 0 0 x x x 0 0 0 0 x x

0 0 0 0 x x 0 0 0 0 0 x

As in the standard implicit shift QR algorithm, it is convenient to think of Q as the
reflection which annihilates two of the three nonzero elements in a fictitious
"zeroth" column of A.

We must reduce Q1A to upper Hessenberg and Q1B to upper triangular by
unitary equivalences. However, we may not premultiply by anything which affects
the first row. This is done as follows. The matrix Q1B has three nonzero elements
outside the triangle. These can be annihilated by two Z’s, a Z’ in Yg3(1) which
annihilates (3, 1)- and (3, 2)-elements and then a Z’ in dog2(1) which annihilates the
resulting (2, 1)-element. Let Z Z]Z’. Then Q1BZ is upper triangular. Applying
Z to Q1A gives Q1AZ with the following form:

X X X X X X

X X X X X X

X X X X X X

X X X X X X

0 0 0 x x x

0 0 0 0 x x

This is multiplied by Q2 in og3(2) that annihilates the (3, 1)- and (4, 1)-elements.
Then QzQ1AZ1 and QzQBZ have the forms
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AN ALGORITHM 249

X X X X X X X X X X X X

X X X X X X 0 X X X X X

0 x x x x x 0 x2 x x x x

0 x x x x x 0 x x x x x

0 0 0 x x x 0 0 0 0 x x

0 0 0 0 x x 0 0 0 0 0 x

The first columns are now in the desired form. The nonzero elements outside the
desired structure have been "chased" into the lower 5 5 submatrices.

Now, postmultiply by Z2, a product of a matrix in Yg3(2) and a matrix in
og2(2) that reduces the current B to triangular form. Then premultiply by Q3 in
Yf3(3) to annihilate two elements outside the Hessenberg structure ofthe resulting A.

The process continues in a similar way, chasing the unwanted nonzero ele-
ments towards the lower, right-hand corners. It ends with a slightly simpler step
which uses Q,_ 2 in Ygz(n 1) to annihilate the (n, n 2)-element of the current A,
thereby producing a Hessenberg matrix, and Z,_ 2 in ff2(n 1) which annihilates
the (n, n 1)-element of the current B, producing a triangular B but not destroying
the Hessenberg A.

The fictitious zeroth column ofA is determined in part by the shifts. In analogy
with the implicit double shift algorithm, we take the shifts 0.1 and 02 to be the two
zeros of the 2 x 2 problem

det ( 0"B) O,

where

A (an- 1,n- an- 1,n)an an
bn- 1,n- bn- 1,n

It is not desirable to compute 0"1 and 0"2 explicitly, or even to find the coefficients
in the quadratic polynomial det ( 0.). Instead, following the techniques used
in "hqr2" [8], we obtain ratios of the three nonzero elements of the first column of
(AB- 0.11)(AB- 0.21) directly from formulas which involve only the differ-
ences of diagonal elements. This insures that small, but nonnegligible, off-diagonal
elements are not lost in the shift calculation. The formulas are (m n 1)

atom a 11_

bmm -1
an

a32
a3o b22.

amm all anm bmn
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250 C. B. MOLER AND G. W. STEWART

We are now in a position to summarize the double implicit shift method. It is
understood that A and B are to be overwritten by the transformed matrices as they
are generated.

1. Compute alo, a2o, and a3o by (4.1).
2. Fork= 1,2,...,n-2,

(a) determine Qk 3(k) to annihilate ak + 1,k- and ak + 2,k-

(b) determine Z, ta(k) to annihilate bk + 2,k + and bk + 2,k

(C) determine Z Jcf2(k) to annihilate bk +
3. Determine Q_ Jcf2(n 1) to annihilate a,,_ 2.

4. Determine Z_ Jcf2(n 1) to annihilate b.,_
For each k, determination of QR requires a few multiplications and one square

root. Application of Qk to both A and B requires about 10(n k) multiplications.
The work involved with each Z, is the same. Application ofZ requires only about
6(n k) multiplications. The number of additions is about the same. Summing
these for k from I to n 1 gives a total ofabout 13n2 multiplications, 13n2 additions
and 3n square roots per double iteration.

By way of comparison, for the double shift QR algorithm as implemented in
"hqr," Z, becomes simply Q[ and Z is not used. Furthermore, the transformations
are carried out on only one matrix. Consequently, each double iteration requires
about 5n2 multiplications, 5rl2 additions and n square roots. Thus the QZ algorithm
applied on two matrices can be expected to require roughly 2.6 times as much
work per iteration as the QR algorithm on a single matrix.

In order to obtain eigenvectors, the Q’s are ignored and the Z’s accumulated.
This requires about 8n2 more multiplications and 8nz more additions per double
iteration.

There is one difficulty. The formulas for a o, a20, and a3o are not defined
when bl and b22 are zero. Moreover, if bll and bEE are small the terms that
determine the shift (terms involving a,,, b,,, etc.) become negligible compared to
the other terms, so that the effect of the shift is felt only weakly.

Part ofthe solution to this difficulty is to deflate from the top. Ifb 11 is negligible,
it may be set to zero to give the forms for A and B (n 4):

x x x x 0 x x x

x x x x 0 x x x

0 x x x 0 0 x x

0 0 x x 0 0 0 x

A Q in g2(1) can then be used to annihilate the (2, 1)-element of A, which deflates
the problem.

The rest of the solution lies in recognizing that there is not much of a problem.
If b ll and b22 are small, then the problem has large eigenvalues. We have already
observed that the larger eigenvalues tend to emerge at the upper left, and the larger
the eigenvalue, the swifter its emergence. Moreover, the speed will not be affected
by a small shift. This means that whenever the implicit shift is diluted by a small b 11

or b22, the algorithm is none the less profitably employed in finding a large
eigenvalue.
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5. Further reduction of the quasi-triangular form. The result of" the algorithm
described so far is in an upper triangular matrix B and a quasi-upper triangular
matrix A in which no two consecutive subdiagonal elements are nonzero. This
means that the original problem decomposes into 1 1 and 2 2 subproblems.
The eigenvalues of the I 1 problems are the ratios of the corresponding diagonal
elements of A and B. The eigenvalues of the 2 2 problems might be calculated
as the roots of a quadratic equation, and may be complex even for real ,4 and B.

There are two good reasons for not using the quadratic directly, but instead
reducing the 2 2 problems. First, when A and B are real, the calculation of
eigenvectors is greatly facilitated if all the real eigenvalues are contained in x 1
problems. A more important second reason is that the 1 1 problems contain more
information than the eigenvalues alone. For example, if a and b are small, then
the eigenvalue 2 a /b is ill-conditioned, however reasonable it may appear.
This reason obviously applies to complex eigenvalues as well as real ones. Accord-
ingly, we recommend that the 2 2 problems be reduced to 1 1 problems and
that the diagonal elements, rather than the eigenvalues, be reported.

Without loss of generality we may consider the problem of reducing 2 2
matrices A and B simultaneously to upper triangular form by unitary equivalences.
For our purposes we may assume that B is upper triangular.

Two special cases may be disposed of immediately. If ba is zero, then a
Q e Jcg2(1) may be chosen to reduce azx to zero. The zero elements of QB are not
disturbed. Similarly, if b22 is zero, a Z e 2(1) may be chosen to reduce a2 to zero
without disturbing b2 .

In the general 2 2 case, it is not difficult to write down formulas for the
elements of A’ QAZ and B’ QBZ for any Q and Z. Moreover, these formulas
can be arranged so that numerically one ofa or ba is effectively zero. It is not
obvious, however, that the other element is numerically zero, and the effect of
assuming that it is by setting it to zero could be disastrous. Consequently, we must
consider a somewhat more complicated procedure.

The theoretical procedure for reducing A to triangular form may be described
as follows. Let 2 be an eigenvalue of the problem and form the matrix E A 2B.
Choose a Z 2(1) to annihilate either e or e2. Since the rows of E are parallel,
it follows that whichever of e or e2 is annihilated the other must also be an-
nihilated. Now choose Q Jog2(1) so that either QAZ or QBZ is upper triangular.
Since the first column of QEZ is zero and QEZ QAZ 2QBZ, it follows that,
however Q is chosen, both QAZ and QBZ must be upper triangular.

In the presence of rounding error the method of computing 2 and the choice
of Z and Q are critical to the stability of the process. A rigorous rounding error
analysis will show that, under a reasonable assumption concerning the computed
2, the process described below is stable. However, to avoid excessive detail, we
only outline the analysis. We assume that all computations are done in floating-
point arithmetic with base fl digits and that the problem has been so scaled that
underflows and overflows do not occur. We further assume that a2 is not negligible
in the sense that [a2x[ < fl-tllAll, where II" denotes, say, the row sum norm.

The algorithm for computing 2 amounts to making an appropriate origin
shift and computing an eigenvalue from the characteristic equation. It goes as
follows.
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252 C. B. MOLER AND G. W. STEWART

lu all/b11,

a12 a12

a22 a22

1/22
(/21(/12

q
bllbz2’

r=pE+q,

/2b12,

/zb22,

b12a21
bllb22

(5.1) 2 # + p + sgn (p). x/ (complex if r < 0).
We must now assume that the computed 2 satisfies the equation

det (A’ 2B’) O,
where IIA A’II <_- aallAII and lib B’II <-_ anllBll with rA and an small constants
of order/3-. Define

E’=A’-2B’
and let E denote the computed value

E fl (A 2B).
Then

E’=E+H
with H =< a max {tl A [[, 121 e II} with a of order fl-

We claim that, approximately,

(5.2) IIEII => fl-’ max {llall, 12111nll}.
First we note that

(5.3) [lUll >_-lezl- lazll >=/-llall,

by the assumption that a2 is significant. Now assume that IIEII </-’121 IIBII.
Then subtractive cancellation must occur in the computation of eaa, ea2, and e22.
Thus ax 2b1, a2 , 2b12 and azz 2b22. Hence we have Ilall => 12111nll,
and, from (5.3), IIEII _->/-’121 IIBll, a contradiction.

Now
0 det (E’)= det (E) + (el + hx)h22 (e12 + h2)h21 + hlxe22 h2e21.

Hence

Idet (E)[ =< plllEll max {llall, 12111nll} / p2[max {llhll, 12111nll}] 2,
where pa and P2 are of order fl-t. From (5.2) it then follows that

Idet (E)l =< PlIEII max
where p is of order fl-t.

Now consider the determination of Z. Assume that the second row of E is
larger than the first. Then Z e /g2(1) is chosen to annihilate e2a. Let F EZ.
Then f2 is essentially zero. Furthermore, since Z is unitary,

Ifxxf221 Idet (E)l _-< pllEII max {llZll, I111nll}.
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ALGORITHM 253

But If221 Ile2]l and, since e2 was assumed to be the,larger row, lie211 IIEII.
Hence we have approximately

Ifxl _-< max (llhll, 12111nll).
To choose Q, let

C AZ, D BZ,
and let fl, Cl, and d be the first columns of F, C, and D. Let q2 denote the second
row of Q. If IIZ >= 121 Ilnll, we choose Q to annihilate d21. Numerically this means
that

Iqdxl <= rllnll,

where tr is a constant of the order of fl-t. We must show that qc is negligible. But

Iqcll Iqf + 2qdll

_-< fl + I,l qd 111
__< p max { a II, I,1 nil / al,l n
-<_ (p /

If, on the other hand, 121 Ilnll > Ilall, we choose Q so that

Iqcl <= rllall.
It then follows that

Iqdl Iqf qr2cl/121

=< plA1-1 max { Z II, I,1 n II} / rl,l- 11A
-< (p / a)llnll.

In summary, 2 is computed using (5.1), Z is chosen to annihilate the first
element of the larger of the two rows of A 2B and Q is chosen to annihilate the
(2, 1)-element of the smaller of the two matrices AZ and 2BZ. In this way, we can
be sure that the computed (2, 1)-elements of both QAZ and QBZ are negligible.

In practice with matrices of any order, if the transformations are real, they
are applied to the entire matrices. If the transformations are complex, they are
used to compute the diagonal elements that would result, but are not actually
applied. We thus obtain a quasi-triangular problem in which each 2 x 2 block is
known to correspond to a pair of complex eigenvalues.

The generalized eigenvectors of this reduced problem can be found by a
back-substitution process which is a straightforward extension of the method
used in "hqr2" [8]. The vectors of the original problem are then found by applying
the accumulated Z’s.

6. Some numerical results. The entire process described above has been
implemented in a FORXRAN program [7]. There are four main subroutines" the
initial reduction to Hessenberg-triangular form, the iteration itself, the computa-
tion of the final diagonal elements, and the computation of the eigenvectors. The
complete program contains about 600 FORXRAr statements, although this could
be reduced somewhat at the expense of some clarity.

The numerical properties observed experimentally are consistent with the use
of unitary transformations. The eigenvalues are always found to whatever accuracy
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254 C. B. MOLER AND G. W. STEWART

is justified by their condition. If an eigenvalue and eigenvector are not too "ill-
disposed," then they produce a small relative residual.

Similar numerical properties cannot generally be expected from any algorithm
which inverts B or any submatrix of B. This is even true of 2 2 submatrices, as
illustrated by the following example due to Wilkinson:

3 .4’ 0

Here p is about the square root of the machine precision, that is, # is not negligible
compared to 1, but/2 is. There is one eigenvalue near -2. Small relative changes
in the elements of the matrices cause only small relative changes in this eigenvalue.
The other eigenvalue becomes infinite as # approaches zero. Great care must be
taken in solving this problem so that the mild instability of the one eigenvalue
does not cause an inaccurate result for the other, stable eigenvalue.

Of course, the use of unitary transformations makes our technique somewhat
slower than others which might be considered. But the added cost is not very
great. In testing our program, we solve problems of order 50 regularly. A few
problems of orders greater than 100 have been run, but these become somewhat
expensive when they are merely tests.

One typical example of order 50 requires 45 seconds on Stanford’s IBM 360
model 67. Of this, 13 seconds are spent in the initial reduction, 29 seconds are used
for the 61 double iterations required, and 3 seconds are needed for the diagonal
elements and eigenvectors. If the eigenvectors are not needed and so the trans-
formations not saved, the total time is reduced to 27 seconds. By way ofcomparison,
formation ofB- 1A h la Peters and Wilkinson [9] and use of FORTRAN versions 12]
of "orthes" [5] and "hqr2" [8] requires a total of 27 seconds for this example. (All
of these times are for code generated by the IBM FORTRAN IV compiler, H level,
with the optimization parameter set to 2.)

In the examples we have seen so far, the total number of double iterations
required is usually about 1.2 or 1.3 times the order of the matrices. This figure is
fairly constant, although it is not difficult to find examples which require many
fewer or many more iterations. As a rule of thumb, for a matrix of order n the time
required on the model 67 is about .36 n3 milliseconds if vectors are computed,
.22 n3 milliseconds if they are not.

The example in Table 1 is not typical, but it does illustrate several interesting
points. It was generated by applying nonorthogonal rank one modifications of the
identity to direct sums of companion matrices. The companion matrices were
chosen so that the resulting problem has three double roots,
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TABLE

h

50 -60 50 -27 6 6

38 -28 27 -17 5 5

27 -17 27 -17 5 5

27 -28 38 -17 5 5

27 -28 27 -17 16 5

27 -28 27 -17 5 16

16 5

5 16

5

5

5

6

25.768670843143
12.821841071323
5.814535434181 + 0.071071345641i
5.800765071150 10.047220375909i
5.736511506410 + 9.935928843473i
5.510879468089 9.545122710676i

/#
0.976972281.108

-0.976972290.108
0.49999999310489 + 0.86602543924271i
0.49999999310489 0.86602543924271i
0.50000000689511 + 0.86602536832617i
0.50000000689511 0.86602536832617i

5 5 -6 5

5 5 -6 5

5 16 5 -6 5

5 5 16 -6 5

5 5 5 -6 16

6 6 6 -5 6

.2637605112.10-6

.1312405807.10-6

11.629071028730
11.601530302268
11.473022854605
11.021758784186

The double root at results from the fact that B has a double zero eigenvalue.
All three roots are associated with quadratic elementary divisors; i.e., each root
has only one corresponding eigenvector. The computed diagonals of the triangu-
larized matrices are given in the table. Note that the four finite eigenvalues are
obtained with a relative accuracy of about 10-8. This is about the square root of
the machine precision and is the expected behavior for eigenvalues with quadratic
elementary divisors. The singularity of B does not cause any further deterioration
in their accuracy. Furthermore, the infinite eigenvalues are obtained from the
reciprocals of quantities which are roughly the square root of the machine precision
times the norm of B. Consequently we are somewhat justified if we claim, to have
computed the square root of infinity.

Acknowledgments. W. Kahan and J. H. Wilkinson made several helpful
comments. Linda Kaufman of Stanford has recently shown how to carry out the
corresponding generalization of the LR algorithm and has written a program that
accepts general complex matrices. Charles Van Loan ofthe University of Michigan
has done a detailed roundoff error analysis of the process described in section 5.

1This prompts us to recall the limerick which introduces George Gamow’s One, Two, Three,
Infinity:

There was a young fellow from Trinity
Who tried x//-

But the number of digits
Gave him such fidgets

That he gave up Math for Divinity.
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