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APPROXIMATIONS AND BOUNDS FOR EIGENVALUES OF
ELLIPTIC OPERATORS*

L. FOX, P. HENRICI$ AND C. MOLER
1. Introduction. Let G be a bounded, n-dimensional domain with bound-

ary F. Let p(x) and q(x), i 1, n, be positive functions defined on
and let D denote the linear, self-adjoint differential operator defined by

Du 0 Ou
:

q

The eigenvalue problem for D on G involves the nonzero solutions k and
u(z) of

(1.1) Du(x) q- kp(x)u(x) 0, x E G,

with the boundary condition

(1.2) u(x) o,
The eigenfunctions may be normalized so that

(1.3)

where

(.4)

1M fa u(x)p(x) dx 1,

M fa p(x) dx.

xEP.
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We are interested in computing accurate approximations to the eigen-
values and their corresponding eigenfunctions. Furthermore, we want to
estimate the accuracy of our approximations by using them to compute
upper and lower bounds for the true eigenvalues.

In 2 we prove the following theorem which is the basis for these upper
and lower bound calculations.
THEOREM. Let X* and u* be an approximate eigenvalue and eigenfunction

which satisfy (1.1) and (1.3), but not necessarily (1.2). Let

(.5) max
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90 L. FOX ). HENRICI AND C. MOLER

and assume e < 1. Then there exists an eigenvalue ) ofD on G satisfying

k* 1 e"

The proof will use he fc h mxmum principle holds for he
opera,or D; ha is, if s ny function for which

Ow(x) O, x G,(1.7)

then

(1.8) mx lw(x) _-< max w(x) !.
xEq xEF

In 3 we outline a general technique for constructing a X* and u* which
can produce an arbitrarily small in (1.5).
In 4 we specialize to two-dimensional domains and take D to be the

Laplacian A. We describe the method of collocation by interpolation
for finding ),* and u*. This method is particularly suitable for domains with
symmetry and domains with corners, that is, where a portion of F consists of
two intersecting straight line segments.

In 5 we illustrate the method by applying it to elliptical domains of
varying eccentricity.

In 6 we consider a much-studied example of a domain with corners,
the L-shaped union of three unit squares. Its largest angle is -r and thus is
reentrant. For this example our method has proved significantly more
accurate than any other known method. In fact, the upper and lower
bounds obtained are even more precise than the approximations without
bound obtained by other methods. For the first (smallest) eigenvalue of
the L, for example, we show that

9.6397238 -<_ kl -<_ 9.6397239.

Finite difference methods have been used and analyzed for these problems
by Forsythe and Wasow [4], Fox [5], Moler [9], Veidinger [13] and others.
However, convergence of these methods is quite slow for domains with
reentrant corners. Difference methods in combination with collocation
and conformal mapping have been used by Reid and Walsh [10] for the
L, but their techniques become quite involved for more complicated
domains.
The method of intermediate problems (A. Weinstein [14]) gives upper

and lower bounds for certain domains. For example, Stadter [11] uses the
method for rhombical domains.

Collocation methods similar to the one we describe in 4, but without
the upper and lower bounds, have also been developed by J. Reid and B.
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EIGENVALUES OF ELLIPTIC OPERATORS 91

Martin of the University of Sussex and J. WMsh of the University of
Manchester.

2. Proof of the theorem. The proof of our theorem is based on the
following result which occurs in many forms in the literature. Collatz [2]
attributes it to Kryloff and Bogoliubov and to D. H. Weinstein.
LEMMA. Let A be a self-adjoint operator on a Hilbert space with inner

product .,. ). Let X, and u be the eigenvalues and orthonormal eigenfunctions
of A. Assume IX,I has no finite accumulation point. Let v be any element in
the space spanned by {u} and let

(v, Av) (the Rayleigh quotient)

and

<2o2> !1 A

Then ( >-_ p and there exists at least one eigenvalue kk satisfying

(2.3) p / p =< kk =< p -t- /’ p.
For completeness we give the following proof. Let v _, a,,u,,. Then

Thus

I]<A pr)

E an

>- min (M 0)

(Xk p) for some

from which the conclusion (2.3) follows.
In proving the theorem, we take the operator A to be -D and the inner

product to be

(2.4) (f, g) f(x)g(x)p(x) dx.

In the norm thus introduced the normalization becomes

The approximate eigenfunction u* is not quite acceptable as the test
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92 L. Fox P. HENRICI AND C. MOLER

function v of the lemma because it is not zero on all of the boundary and
hence is not in the space spanned by /u}. Let w be the solution to the
boundary value problem

Dw(P) O, P G,
(2.5)

w(P) u*(P), P F,
and let

(2.6) v u* w.

Then v satisfies the conditions of the lemma. We shall not need to actually
calculate w, but shall only need to estimate its norm.

Defining

(2.7) 11 to II
and

(2.8) cos
(u*, w)

we find, after a short manipulation, that

(2.9) p :i: /-i p ),* 1 cos -1- 2cosO+

Hence there exists N k with

(2.10) IX h*[ < max I cos 0 sin
h* 1- 2cos0 +

where the maximum is over the two terms obtained with the
From the identity

+ cos0+ sin0--
1 - 1 2wcos0+

0 0 (
( cos 0 sin 0)(1 2)(1 2 cos 0 + 2)

and the fact that if w2 < 1 the quantity on the right is nonnegative for
all 0, we conclude

(2.11) ]cos0sin0-[ <+ for all
1 2cos0+ 1-

By (2.4), (1.8) and (2.5) we have

(2.12) -<- max w --<- max u
(
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EIGENYALUES OF ELLIPTIC OPERATORS 3

Finally, combining (2.10)-(2.12) we find

X* I e

which establishes the theorem.

3. The method of particular solutions. In order to make use of the
Theorem, we must have a constructive method for obtaining * and u*.
One available approach can be based on the method of particular solutions
developed independently by S. Bergman [1] and I. N. Vekua [12] (see also
[6] and [7]). We explain it briefly for two-dimensional domains in which
q(x, y) q(x, y). In this case (1.1) becomes

(3.1) Lu /u - (q/q)u - (q/q)u - )(p/q)u O.

It is also assumed that q/q, q/q and p/q are entire analytic functions and
that G is simply connected and contains the origin.
By writing the elliptic operator as a formally hyperbolic operator in the

variables z x iy and z* x iy, and applying Riemnn’s method of
integration, it is possible to set up in a natural way a linear one-to-one
mapping u f[f, f*] of the pairs (f, f*) of functions of the single complex
variable z holomorphic in G and G*, respectively, and satisfying
f(O) f*(O), onto the complex-valued functions u satisfying (3.1). The
inverse mpping is defined by

z f*(z) uf(z) u

By taking f and f* to be powers of z, au infinite sequence of purticular
solutions is constructed"

u0(x, y) f[1, 1],
(3.2)

u_(x,y) f[z, 0], u(x, y) 2[0, z], n 1, 2, .-..

Finite linear combinations of these solutions

(3.3) cu( x, y)
j-----0

may be used for the approximate eigenfunction. The operator L and
hence the linear combination (3.3) depend upon ),. Thus ) and the c are
chosen to make the e in (1.5) as small as possible.
The mapping is continuous in the Chebyshev norm in each compact

subdomain of G. It thus follows from standard approximation theorems
of one complex variable that any eigenfunction u regular in G can be ap-
proximated, uniformly in any compact subdomain of G, by the linear corn-
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4 L. FOX P. HENRICI AND C. MOLER

binations (3.3). If G is a Jordan domain, and if u is sufficiently smooth on
the closure of G, then it follows from a theorem of Walsh [12] that u can
be approximated in the Chebyshev norm by linear combinations (3.3)
even on the closure of G.

4. Collocation by interpolation. The remainder of the paper is concerned
with two-dimensional domains and

2 02

For this operator, the method of particular solutions produces

(4.1) u*(r, O)
where (r, 0) are polar coordinates in G and J(. is the th order Bessel
function. The values of a, )* and c are to be determined.
There are two classes of domains for which the at are determined in a

natural way. The first class includes domains which, when centered at the
origin, are symmetric with respect to both the x and y axes. If aj 2j,
j 0, .-.,N 1, then

N--1

(4.2) u*(r,
’=0

retains the known symmetries of the first eigenfunction. Similar choices
apply to other symmetries and higher eigenvalues.
The second class of domains involve those for which F contains a corner

with angle - for some a _-> 1/2. The origin is taken as the vertex of the angle,

0 and - correspond to the two straight line segments forming the

angle and i jc, j 1, N. Then

(4.3) u*(r, ) cJ,(.V/-r sin ja0

automatically satisfies the boundary condition on the sides of the angle
and has the correct asymptotic singularity at the corner.
There are several possible methods for determining suitable values for

)* and c. Possibly the simplest is to pick N points, (r, ), ] 1, N,
on the boundary F and interpolate the boundary condition at these points.
Thus we require

(4.4) u*(r O) O, ]c 1, N.

Using the u* of (4.3) for illustration, if we let

(4.5)
as ai()) J,(%/-r) sin cO,

A() be the N X N matrix a()) },
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EIGENVALUES OF ELLIPTIC OPERATORS

and

then (4.4) becomes

(4.6) A(X)c 0.

We therefore define X* to be a root of the equation

(4.7) det (A(X)) 0.

For any root the approximate eigenfunction u* is obtained by solving (4.6)
for the coefficients cj.

The resulting X* and u* depend upon N and upon the choice of the
interpolating points (r,, 0h). In our experiments we have usually chosen
the points to be equally spaced along r. We have also found it helpful to
impose conditions on the derivatives of u* at certain points. These con-
ditions are used to help force the contour u* 0 to be close to I’ and
thereby reduce maxr u* I.
The u* defined in this way does not necessarily satisfy the normaliza-

tion condition (1.3). A lower bound for u* is required. Let Go be the,

largest circle or circular sector centered at the origin and contained in G.
Let

(4.8) radius of Go.
Then, again using (4.3) for illustration,

1 fo (u*(x))Ilu*]l>__ dx

N__1 _, c c fo Jk(r)J(r)r dr sin 0 sin
M k,j=l

(Now, M is simply the area of G.) Since a is an integer times a, the set of

functions sin aO, j 1, N, is orthogonal on 0 O . Hence

(4.9) u* ]] > 1 c Jo J(r)r dr.
M 2 =

If u* is given by (4.2), then a should be taken as {.
The Bessel function integrals occurring here can be expressed in terms

of values at r by using formulas proved, for example, in Courant-Hil-
bert [3]"

1"’ =16,{ ( +(1 )J,(6)}(4.10) J,(,r)r dr 5 J" )
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96 L. FOX P. HENRICI AND 12, MOLER

(4.11) J (/t) J(#/t) J+l(gi).

The important quantity occurring in the upper and lower bounds is, of
course, e maXer[U*(X)I. For a given domain it may be possible to
obtain a good estimate of this a priori (once the distribution of the N
boundary points is specified). However, we have chosen to calculate the
maximum a posteriori. But this involves an additional theoretical problem:
What is the error made in the computation of the error bounds? A com-
plete rigorous analysis is, in principle, possible and would include a de-
tailed study of the algorithm used to find max[u* as well as the roundoff
errors in the other computations.

5. Elliptical domains. Application to domains with two-fold symmetry
can be illustrated with ellipses of various eccentricities. As may be ex-
pected, the method is very successful. The bounds obtained for the first
eigenvalue are given in Table 1. For all values of the major axis, N 10
was used in (4.2). The 10 interpolating points were equally spaced along
one-fourth of the perimeter. Even tighter bounds would be obtained with
more points or with a more appropriate distribution of the 10 points.
The eigenvMues of ellipses can also be characterized as the zeroes of

certain Mathieu functions. We thus have here a practical method for
computing these zeroes.

6. The L-shaped membrane. As an important example, we consider the

TABLE 1

Bounds for the first eigenvalue of ellipses

(Semiminor axis 1.0)

Semimajor
axis

1.0
I.I
1.2
1.4
1.6
1.8
2.0
3.0
4.0
5.0
10.0

Lower bound
Upper bound

5.7831859
.8ooa8
4.8952213

3.9968064
3.7481592

.o828
o$o2.92025o

6952

2384562.
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EIGENVALUES OF ELLIPTI( OPERATORS 97

Fro. 1. Symmetries in the L-shaped membrane

L-shaped membrane illustrated in Fig. 1. With the polar coordinates

centered at the reentrant corner, t runs from 0 to . Hence

(6.1) a .
The bove methods could be applied directly, but the amount of com-

putation required is decreased if symmetries are used. First, there is the
obvious symmetry about the center line. Let P (r, 0) be any point in

GandP, ( 3r ) 3r
r, -- 0 be its reflection about the center line 0 -.

Then any eigenfunction must satisfy (or, in the case of a multiple eigen-
value, can be chosen to satisfy) either

(6.2) u(P) u(P’)
or

(6.3) u(P) -u(P’).
J. Hersch, in [8], establishes the existence of additional symmetry about

the lines which divide the L into its three component unit squares. Let

P (r, 0),

be a point in the "middle" square and let

P1 (r,r- 0) and P. (r, 2r- 0)

be the reflections of P about the lines t and 0 r. (See Fig. 1.) Then

Hersch shows that any eigenfunction must satisfy either

(6.4) u(P) u(P1) - u(P)
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98 L. FOX P. HENRICI AND (3. MOLER

or

(6.5) u is an eigenfunction of the unit square.

These symmetries have two consequences. First, we need only work in

the "first" square, 0 < O < r. Any approximation of u there can auto-

matically be extended to the other two squares. Second, requiring the
approximate eigenfunction u* to have the same symmetries as u sub-
stantially reduces the number of terms necessary to obtain a given ac-
curacy. For example, if u* is made to satisfy (6.2) and (6.4), then it
follows that

’=1

for all r and O. Hence, if ci 0,

1
cos o 2 2

(6.7) a. a, 5a, 7a, lla, 13a, ....
Thus, for a given N, replacing the original definition of a. (namely, as ja)
with the above sequence increases the number of terms with nonzero c.
by factor of three. Furthermore, u* is guaranteed to exhibit the proper
symmetries.
The sequence (6.7) follows from (6.2) and (6.4). These equutions hold,

for example, for the eigenfunction corresponding to the first eigenwlue.
If, instead, we want u* to satisfy (6.3) and (6.4), we find

(6.8) a- 2a, 4a, 8a, 10a, 14a,

or, if u* stisfies (6.5),

(6.9) al 3a, 6a, 9a, ....
The boundary points (rk, 0k) chosen on the perimeter of the first square

are spaced at an interval h, where 1/h is an integer. This defines 2/h points"

(rl,01) (%/i + h2,tan-lh),

(r, 0) (/ - 4h2, tn-1 2h),

(re/h, Oe/h) (1, r/2).
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EIGENVALUES OF ELLIPTIC OPERATORS 99

In addition we require

---0

at the two corners 1, 0) and (%/, r/4). Thus the total number of terms is

2N=-+ 2.

Table 2 lists )* and e for the first eigenvalue of the L obtained with
various values of h. It will be noted that e, and hence the gap between the
upper and lower bounds, actually increases with the larger values of N.
This is apparently due to roundoff errors in the solution of (4.6) for the
coefficients c. These errors do not mean that the computed bounds are
not, in fact, bounds, only that they are farther apart than they need be.
Table 3 lists the best bounds obtained for ten eigenvalues of the L.

(A separate calculation based on [16] proves they are the first ten.) The
mode of the eigenfunction is classified as symmetric or antisymmetric and
as "square" for functions which satisfy (6.2), (6.3) and (6.5), respectively.
The exact values for the "square" eigenfunctions are )3 2r and the
double eigenvalue s 9 5r. The calculated values of * agree with
these exact values to the number of decimal places used in the table.
By way of comparison with other methods, the best values obtained by

Reid and Walsh [10] are 1 9.63972 and ) 15.1973.
C. Moler, together with Professor G. E. Forsythe of Stanford University,

obtained a value (unpublished) of 9.639724 for )1 by extrapolation of
finite difference values obtained with very small meshes. Neither of these
other methods yields any bound of its accuracy.

TAB,E 2

Dependence of X* and upon N

1 4
6
8
10
12
14
16
18
20
22
24
26

9.658161723
9.639624491
9.639726632

3703
3855
3844
3844
3845
3845
3845
3844
3846

1.02, 0-3
1
1.58,o-
1.57,0-
1.7410-’
3.92, 0-8
2.62,0-9
7.11,0-9
2.95, 0-8
3.74,0-9
4.52,0-8
1.49,0-,
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100 L. FOX P. HENRICI AND (3. MOLER

TABLE 3
Bounds for the first ten eigenvalues of the L

1
2
3
4
5
6
7

8, 9
10

Lower bound for kn
Upper bound for

9.639723S]
1 2 18415. 97 5201

l.ne0i

31.9126311
41. 47451,59

flo46744.o509
9.as0
6.7096

Mode of eigenfunction

symmetric
antisymmetric
symmetric, square
antisymmetric
symmetric
symmetric
antisymmetric
multiple, square
symmetric

7. Other domains. In all fairness, it should be reported that results are
not always as satisfactory as these examples indicate. Experiments with
rhombical domains were also made. These domains have both symmetry
and a corner. However, we have been unable to obtain bounds signifi-
cantly tighter than those obtained in [11] by other methods. The difficulty
stems from the existence of two corners with nonintegral values of a.

These singularities are reflected in the slow convergence of either (4.2)
or (4.3) and consequent influence of roundoff errors in the coefficients.
Other methods for defining and computing these coefficients are currently
being investigated.

8. Computational details. We conclude with a few remarks on the
techniques used in the computations.
The Bessel functions are evaluated by truncating the alternating series

(8.1) g(x) x _, t,
n-0

where t t_/(u(n + ) ). The value of to should be

1(s.2) to t0(,)
2,r(, + 1)’

but it is not necessary to compute this gmm function since to is merely a
scule fctor which can be absorbed into the coefficients c.. In fact, it is
convenient to use a value of to quite different from that given by (8.2)
in order to scale J, to be about 1 for the arguments used. If this is done,
it is not necessary to check for floating point exponent underflow and over-
flow during the evaluation of the determinant (4.7).

(With a different value of t0(u), (4.12) should be replaced by

to(v) j+().)(4.11’) J,’(ti) - J,(ui)
2( q- 1)-t0(u q- 1)
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EIGENVALUES OF ELLIPTIC OPERATORS 101

The function det (A (k)) is computed, using triangular decomposition
(Gaussian elimination) with partial pivoting, for a few values of k near a
zero of the function. Then inverse interpolation is used several times to
find k*.

This use of inverse interpolation proves o be quie satisfactory for he
smaller eigenvlues of he L. Bu for he higher eigenvlues and for 11
he eigenvlues of some oher domains sudied, he quniy de (A(k))
hs local exremum very near k* nd i is herefore necessary o loce
X* quie ceurely before inverse interpolation en be used.

Inverse ierion [15] is used o solve (4.6) for he coefficients. In
he required ringulr decomposition of A(k*) hs lredy been computed
during he deerminn evaluation. Any reduction of he roundoff errors
incurred in he computed e his poin would led o igher upper nd
lower bounds.

Finally, he clculion of mxlu*(P) on F is one-dimensionM
mximizing problem. The boundary is broken into intervals by he points
(rk, k). It is assumed that the only local minima of [u*[ occur, at these
points and thus a simple maximizing search is used on each interval. If
another local minimum is found, the search can be carried out on each of
the resulting subintervals.
Our computer program is written in ALGOL. A Control Data 1604A

with a 36-bit floating point significand was used. The calculation of one
value of k* and the resulting bounds takes slightly over one minute for
the largest values of N shown. Most of this time is spent in the maximizing
searches on the boundary. Even so, this time represents a considerable
reduction over the other methods which do not produce bounds.
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