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A Class of Numerical Methods for the Computation of
Pythagorean Sums

Moler and Morrison have described an iterative algorithm for the computation of the Pythagorean sum @ + )" of two real
numbers a and b. This algorithm is immune to unwarranted floating-point overflows, has a cubic rate of convergence, and is
easily transportable. This paper, which shows that the algorithm is essentially Halley’s method applied to the computation of
square roots, provides a generalization to any order of convergence. Formulas of orders 2 through 9 are illustrated with
numerical examples. The generalization keeps the number of floating-point divisions constant and should be particularly

useful for computation in high-precision floating-point arithmetic.

1. Introduction
Asin [1], the Pythagorean sum A of two real numbers a and b
is defined by

h=(d + )"~

Pythagorean sums are a frequent occurrence in numerical
computations, and their evaluation in floating-point arith-
metic requires some precautions, often overlooked, to prevent
unwarranted overflows or underflows. In their paper, Moler
and Morrison [1] describe an elegant iterative algorithm for
the computation of Pythagorean sums that is immune to
unwarranted overflows, has a cubic rate of convergence, and
is easily transportable to any machine.

This paper presents a summary description of the Moler-
Morrison algorithm and shows that it is essentially the
application of Halley’s method [2] to the computation of
square roots. A generalization to any convergence order
higher than linear is then proposed that preserves the main
properties of the Moler-Morrison algorithm. Algorithms for
orders 2 through 9 are illustrated with numerical examples.
Since the general algorithm is based on a rational iteration,
the number of divisions required per iteration is constant
(two), while the number of multiplications is proportional to
the order of convergence. High-order algorithms should thus
be particularly interesting for multiple-precision floating-
point computations.

2. The Moler-Morrison algorithm

In a rectangular coordinate system {x, y} of origin 0, we
consider a sequence of points {A”; n=0,1,2,--}, A, being in
the first quadrant, at a distance / from the origin. 4,,, is
derived from A, as follows. Let H, be the projection of A4, on
the x axis and M, the midpoint of 4,H,. 4, , is defined as the
reflection of 4, in OM, (Fig. 1). Elementary geometric
considerations show that A, , and A, are in the same
quadrant, at the same distance from the origin, and that
A, ., is closer than 4, to the x axis. Thus, from the definition
of A, the set {4, } is on the quarter circle of radius 4 in the
first quadrant, with 4, » between A4, and A, the point of
abscissa 4 on the x axis. The sequence {A"} converges
monotonically towards 4.

Let x, and y, be the coordinates of 4,. From the above
considerations, the sequence {x,} converges monotonically to
h from below, with

h=(2 4+ n=0,1,2- )

while the sequence { »,} converges monotonically to zero from
above. Thus, {x,} can be considered as a sequence of approxi-
mants to the Pythagorean sum of two arbitrary numbers x,
and y,. From the relationship between 4, and 4, ,, we now
derive the iteration formulas providing the pair (x,,, y,,,)
from (x,, y,).
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Without loss of generality, we henceforth assume that
Xo =y, >0,

considering that the Pythagorean addition is commutative
and that the case y, = 0 is trivial. This assumption guaran-
tees that

x, =y, >0 @

for any finite value of n.

From Eq. (1), we have
xi + yf, = x:“ + yiH . 3)
Since 4,,,4, is perpendicular to OM ,
Vul Vot = 7 + 2x,(x,,, — x,) = 0. 4
Combining Egs. (3) and (4), we obtain

()

X = X + = I

n+l n 4x’21+y'2'
3

In

.—’ 5
4x:+y: ©)

yn+l =
under the assumptions in the inequalities (2).

From Egs. (5), the Moler-Morrison algorithm for the
Pythagorean sum of two real numbers a and b,

b= (az + bZ)]/Z,
can be expressed as follows:

x, = max (|al,|b]),

Y, = min (|al,|b]),
r,=(/x,)"
s,=r,/(4+r),

n=20,12 - (6)

X, =X, + 25,x,,

yn+l = Snyn’

Equations (6) represent the formulation in [1]. For com-
putations in floating-point arithmetic, the iteration is stopped
when

4>~r, +4,

where =~ denotes equality of machine floating-point repre-
sentations. The monotonic convergence of x,, to A from below
and the formulation in terms of r, exclude the possibility of
unwarranted overflows. The asymptotic rate of convergence
is cubic, and very few iterations are required to obtain results
accurate to the working precisions of current computers. The
simplicity, compactness, and accuracy of the algorithm make
it an attractive choice for inclusion in mathematical software
libraries.

IBM J. RES. DEVELOP. @ VOL. 27 ® NO. 6 « NOVEMBER 1983

)

At Yot

X

Figure 1 Geometric interpretation of the Moler-Morrison algo-
rithm.

3. Relationship with Halley’s method

Let f(x) be a real function twice differentiable of the real
variable x. Halley’s method (1694) is an iterative scheme for
finding an approximation to a root of the equation

fx)=0

given an initial guess x, of that root. It is based on the
iteration formuia

A
! @)
X =X —
LA
25
where f,, ', and f 7 are the values of f(x) and its first two
derivatives at x,. The asymptotic rate of convergence of the
method is cubic for simple roots and linear for multiple roots.
More details on this iteration can be found in [2].

3~

We now apply Halley’s method to the computation of
Pythagorean sums. For a given pair (x, y,) such that

0<y,=x,, 8)
the Pythagorean sum

h=(x+y)" ©®)
is a root of the equation

f(x)=x"— K =0. (10)

Replacing f(x) by its expression (10) in formula (7), we
obtain

P-x
xn+l=x"(l+22—‘"§). an
h + 3x,
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From Eq. (11), we can derive that
0=<x,<h (12)
is a sufficient condition for the double inequality

X, <x,,, =h (13)

to hold true. Since x, satisfies the inequalities (12) from the
definitions (8) and (9), the inequalities (13) guarantee that
y, exists such that

Vo=h —x, (14)

e

The combination of Egs. (11) and (14) finally yields

2
Va
Xy = X, (1 + 2—2—7)
4x, + ¥,

and

3

y’l

T Ty

which are precisely the equations (5) derived for the Moler-
Morrison algorithm.

4. A generalization

While the Moler-Morrison algorithm is likely to be of
optimal efficiency for the working precision of current com-
puters, higher-order algorithms may be desirable (under
certain conditions of computational cost) for calculations
requiring higher levels of precision. In this section, we
propose such algorithms for which the number of divisions is
constant and the number of additions and multiplications
varies linearly with the rate of convergence (rational itera-
tion formulas).

The cubic rate of convergence of the Moler-Morrison
algorithm is revealed by forming
(h —x)’

h_xn+1=hz+3x2v

(15)
from Eq. (11).
An obvious generalization of Eq. (15) to an asymptotic

convergence rate k is

(h=x)
- xn+l - Fk(x") s (16)

where F,(x) is a polynomial to be defined. The requirements
we choose to impose upon F,(x) relate to computational
considerations and the properties of the Moler-Morrison
method; they are

® Monotonic convergence to # from below:
0=<x,=<h

is a sufficient condition for
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X, <x,,<h

n+l —

to hold true;

® Stability for positive x iterates: the coefficients of F,(x)
are positive (sufficient condition);

® Rational computability of the x iterates: x, | is a rational
function of A” and x,;

® Compatibility with the Moler-Morrison algorithm: Egs.
(15) and (16) coincide when k = 3.

The choice

h+20+ (- xf
2h

Fk(-x) =

satisfies the above conditions and defines the following
iteration formulas:

_ x)" — (h — x)"

X - £
mH h+x) + (h—x)*
2hy*
- n , 17
T T s )t + (- x )t an
with
X4y, =R (18)

An analysis of Egs. (17) shows that two cases must be
considered, based on the parity of k:

® [ is even; then
The numerator of x,,, is an odd polynomial in x, and an
even polynomial in 4. The denominator is an even poly-
nomial in x, and A. Thus, x,,, is the product of x, and a
rational function of x: and A% using a similar approach, we
find y, | to be the product of # and a rational function of x
and A%

® kis odd; then
X, is again the product of x, and a rational function of x;
and h*, while y,_, is the product of y, and a rational
function of x’ and W

2

From these considerations, we see that a rational iteration
mapping the pair (x,, y,) into the pair (x,,,, y,,,) exists only
when k is odd, since % is not a quantity available for
computation. Similar analyses show that

2
rn+1 = (yn+1/xn+l)

always has a rational expression in terms of r, and h. When
k is even, an iteration can thus be derived that maps the pair
(x,, r,) into (x,,,, r,,,)- These two classes of iterations,
together with Eqgs. (17), constitute the basis for our general-
ization of the Moler-Morrison algorithm. We derive in the
next sections the corresponding iteration formulas. As much
as possible, the outline of the general algorithms follows that
of the cubic algorithm defined by Egs. (6).
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5. Formulas of even order
For an even rate of convergence,

k=2m,

let us first look at the derivation of the x iterate from the first
of Egs. (17). Using the formula for binomial expansion, we

e ()

(h + x)Zm ( 22(21 " 1) 2| lx2m 21+]’

have

h+x)" + (h -

i=0

(19)

with the convention

u
( )=0 when » < 0.

v

As in Section 2, Eq. (6), we define
ro=(n/x)
which with a transformation of Eq. (18) gives

B =x2(1+r). (20)

Combining Egs. (19), (6), and (20), we get

2’"2( )(l+r)

”‘22(2 71)(1+r)
@)

(h+x)" + (h—x)" =

hl(h + x)" = (h — x)"] =

The replacement of the expressions (21) in the first of Egs.
(17) yields

n+1 n m 2m
> ( iy ) (a+r)
i=0
or
= 2 2
Z[(zi:nl)ﬂ(zm) (1+r)
‘xn+l = xn + xn = (22)

™ (2m ;
1+7r)
L (z)or
for a formula analogous in form to that of the cubic
algorithm. Expressing the fraction in Eq. (22) as a rational
function of r, after replacement of the binomials by their
expressions, we finally obtain
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Note that the numerator of this rational function has a null
constant term and that the denominator is monic. Similarly,
starting with the equation

2

T lh 4 x)f — (h - x )

obtained from Eqs. (17), we derive the iteration formula

Fog={1+r,) - . (24)

Assuming that the coefficients

em [ 2m 2m B
a3 ] (P R ) A

and
(2m) d i 2m

= , =0, m,
o fi‘:(ﬂ)(ﬁ ) ? "

are available, the numerical algorithm for the computation
of (a° + b%)'"* can be expressed as follows:

Xy = max(|a|,lb|),
= [min (Ja|,|b])/x,)%

m
2m) @m) p
P n = Z aP rn ’

p=1

2 (2m)
Q4" = 226 "

poem r n=2012-- (2%5)
Xay1 = Xu + (2m) X s
m 2
=(1+r) .
rn+l ( n P(jm) Q(:m)l

The iteration is stopped when the equality of machine
representations

Ay =A( +r)

is satisfied.

One iteration of this algorithm requires the following
amount of floating-point arithmetic:

(2m + 2) additions, (3m + 1) multiplications, and 2 divi-
sions. 585
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6. Formulas of odd order
The analysis of Section 4 showed that when k is odd,

k=2m+1,

we have an iteration on the pair (x,, y,) that we formulate
below as a straight generalization of the Moler-Morrison
algorithm. Using an approach similar to that of the previous
section, we derive our iteration formulas from Egs. (17).
Defining first the coefficients

QY i i 2m + 1 B 2m + 1
g So\p+ 1 2 2% + 1

p=0,-m—1,

»

and
@2m+1) (i {2m + 1
= ; =0,--,m,
= E0)GEN)
we express as follows the algorithm for the Pythagorean sum
(a2 —+ bz)l/zz

X,

max (| al,|b]),

0

Yo = min (|al,[b]),

I

ro=(x,/y)%

m—1
m+1) _ @m+1) p A
Pn - Zap s
p=0
(2 1) = 2m+1) -1
m+l) P
S, =r, Zoﬁp ’n] An=0,1,2,--. (26)
-
@2m+1) (2m+1)
X, =X, +S, P, .
M1 o 2mtl)
Ynir = 7Ts S, n )

The iteration is stopped when the equality of machine
representations

A =10{+r)

is satisfied, except for the case of the cubic iteration (m = 1),
where the criterion

A4 =A(+r

is more economical and as effective.

One iteration of this algorithm requires the following
amount of floating-point arithmetic:

(2m + 1) additions, (3m + 1) multiplications, and 2 divi-
sions.

(with one less addition for the cubic iteration). We can see
that the odd-order iterations are more efficient than their
even-order counterparts.

The formula of order 1 is of no interest at all. It is a limit
case of linear convergence for which
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an = xn ’

from Egs. (17).

7. An estimate of the maximum number of itera-
tions

Let €, denote the relative distance of the nth iterate to the
Pythagorean sum for the formula of order k:

X
e =1-—--". 27
=17 @7)
Defining
e'l
2
u, = ) (28)
€
L
2

k
un+| = un’
that is,
K €, “’(;
u,=u, and 5= (29)

l+ug.

We now assume that the algorithm is used with a machine
where the floating-point number representation has ¢ digits
in base 8, and for which the relative error in number
representation is bounded by machine precision,

e=18", (30)

where v is a rounding parameter taking the values 1
(chopped representation) or 2 (rounded representation).
Ignoring rounding errors, the iteration of order k ceases to be
effective as soon as

g, < €

or, from Eq. (29),

K
UO £

< -
1+ u, 2

This condition is satisfied a fortiori when

u, < -. (€28

The use of this simpler criterion finds its justification in
the consideration that

Al +u)=0Q)
when

'3
u, < e,

where fl () denotes number floating-point representation in
our machine.
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We can now derive the least upper bound N of the number
of effective iterations of order k.

The maximum value of €,, obtained for the Pythagorean
sum of two equal numbers,

V2

g=1-—,

2

defines the maximum of u, as

V2 -1
V241

from Eq. (28).

u (32)

Combining Egs. (30), (31), and (32), N is the smallest
value of # for which

(ﬁi l)k" <3
V241 2 ’
that is,
1 o log2 —logy + (¢t — 1) log B
N = ceiling log k | V2 +1 ,
og
V2 -1

(33)

where ceiling (w) denotes the smallest integer not less than
w,

We now give two examples based on IBM System/370
arithmetic, short and long precision.

In short precision,
p=16,1=6y=1,
and we obtain, from Eq. (33),
N=4 for k=2,
N=2for 3<k=<38, and
N=1 for k=9

In long precision,
B=16t=14, v=1,
we get
N=25 for k =2,
N=23 for 3<k=<4, and
N=2for 5=<k<09.

These estimates were verified by numerical experiments.
8. Robustness and transportability

While the monotonic convergence of these algorithms guar-
antees that no unwarranted floating-point overflow can occur
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in the course of the computation, underflows can have an
undesirable effect as illustrated below in the case of the cubic
formula.

Assume that the Pythagorean sum
h = (u2 + uz)'/2 =u2

is computed with the cubic iteration (6), u being the machine
underflow threshold, that is, the smallest positive machine
floating-point number. :

We have
ro=1 and s, = 1/5.
The computation of the first iterate reduces to
X, = u + 2s,u.
Since
25y < 1,
we have
fl (25u) =0

and the first x iterate is u. For the same reason, the first y
iterate is zero, and the iteration terminates with the incorrect
result . The same phenomenon occurs for all our formulas
where the iteration takes the form

Xy =X, + ¢,X, (34)

nt
because ¢, is bounded above by 4. This is easily proved by
considering the first of Egs. (17),
(h+ x) — (h —x)*
X =
m (h + x) + (h — x)*

and the identity
h=(1+ r")‘/?x,l s
which yield the inequalities

12

1
0=ux,, —x,=[1+r)" - 1lx,=5rx,

or

One obvious approach to remedy this defect is to perform a
systematic scaling of @ and b by a power of 3, the base of the
machine number representation, to bring x, into the range
(0, B), and to apply the corresponding inverse scaling to the
result. This requires knowledge of § and extra operations in
all cases.
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Table 1 Formulas of even orders, iteration (25).

Table 3 Pythagorean sum of 119 and 120.

k Pand Q Order Iterates
2 P=r 2 120.0000000000000
0=2+r 159.5549451828402
) 168.7209057465608
4 P=4r+3r 168.9997691646582
Q=8+8r+r 168.9999999998423
6 P =16r + 20r* + 5¢° 169.0000000000000
2 3
Q=32+48r+ 18" +r 3 120.0000000000000
8 P = 64r 4+ 1122 + 56 + 7 167.3605440280932
0 — 128 + 2567 + 1607 + 32r° 4 r* 168.9999608618056
169.0000000000000
4 120.0000000000000
168.7209057465608
168.9999999998424
169.0000000000000
5 120.0000000000000
168.9526470501203
169.0000000000000
Table 2 Formulas of odd orders, iteration (26). 6 120.0000000000000
168.9919703649560
k Pand S 169.0000600000000
3 p_> 7 120.0000000000000
S=r/(d+7) 168.9986385471298
169.0000000000000
5 P=8+4
S = "/-66"'*' 127 + )'2) 8 120.0000000000000
168.9997691646582
7 P=32+32r+6r ., 169.0000000000000
S = r/(64 + 80r + 24
r/(64 + 80r + 24" + 1) 9 120.0000000000000
9 P =128 + 192r + 807" + 8r° 168.9999608618056
S = r/(256 + 448r + 240r" + 407 + %) 169.0000000000000

A preferred alternative, requiring knowledge of the under-
flow threshold » and machine precision €, consists of apply-
ing some scaling to the data only when warranted.

In Eq. (34), we observe that, in the absence of underflow,
x, ., is computed accurately to machine precision if

¢, = ¢
Thus, the computation terminates correctly if
¢.X, = €x, = u,

that is, when

X, = ue™".

Because x, is an increasing function of n, it will be sufficient

to satisfy the condition

Xo = ue™',
These considerations define the following scaling rule:

1

e Ifmax (|al,|b|) < ue™', multiply a and b by e™';
® Accordingly, multiply the result by €.
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For example, long-precision computation with an IBM Sys-
tem/370 defines

e=16"and u = 16%
and the scaling condition
max (|a|,|b]) <167¥
for a factor

e =16".

It must be noted that any reasonable integer power of 8 not
less than &' can be used as a scaling factor and that values
higher than ue™" can replace the threshold of applicability
with little loss of efficiency in order to achieve portability
across a wide range of computers.

9. Examples

The iteration formulas of orders 2 through 9 are represented
in Tables 1 and 2 by the functions P, Q, and S that appear in
iterations (25) and (26) (the iteration subscripts and the
order superscripts are dropped for simplicity of notation).
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Two examples of application of these formulas are dis-
played in Tables 3 and 4, obtained with an IBM System/370
in long-precision arithmetic.

10. Conclusion

While the efficiency of the Moler-Morrison algorithm may
be optimum for most current computers, higher-order for-
mulas can be useful for systems with slow division. They find
an obvious use in computations involving multiple-precision
software, where division can be particularly expensive. By
reducing the number of iterations, they are also advan-
tageous for implementation with interpretive high-level lan-
guages (e.g., APL).
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8 180.0000000000000
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9 180.0000000000000
181.0000000000000
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