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S o f t w a r e 
e n g i n e e r i n g

Software testing can improve software quality. To test effectively, scientists and engineers 
should know how to write and run tests, define appropriate test cases, determine expected 
outputs, and correctly handle floating-point arithmetic. Using Matlab xUnit automated 
testing framework, scientists and engineers using Matlab can make software testing an 
integrated part of their software development routine. 

Automated Software Testing  
for Matlab

A lthough they wouldn’t describe them-
selves as programmers, most science 
and engineering researchers routinely 
write software to perform their work. 

Indeed, in one survey, scientists reportedly 
spent about 30 percent of their work time writ-
ing software.1 Software bugs, therefore, have se-
rious implications for the reliability of scientific 
and engineering research. One study comparing 
nine seismic data processing packages showed that 
seismic traces were frequently shifted incorrectly 
by off-by-one indexing errors. Even after these 
faults were corrected, the various program out-
puts sometimes agreed to within only a single 
significant digit, mostly because of bugs.2 Fur-
ther, several journal papers have been retracted 
recently because of bugs.3,4 For example, authors 
had to retract a widely cited protein-structure pa-
per in Science (as well as several related papers) 
because of a column-swapping bug in a data-
analysis program.5 The paper’s incorrect results 
confused other researchers and apparently even 
some grant panels.

In professional programming practice, soft-
ware testing is a fundamental tool for improv-
ing software quality. From my own experience 
interacting with Matlab users, people often 

understand the need for software testing, but 
might not know how to go about it. This observa-
tion agrees with other reports that scientists and 
engineers tend to pick up computing knowledge 
on their own and have relatively little software en-
gineering experience.6–8

The practice of unit testing can help improve 
the quality of science and engineering software. 
Unit tests focus on small units of code, such as a 
class, module, method, or function. To be most 
effective, unit tests should be automated so that 
entire test suites can be run quickly and easily 
and so that the developer doesn’t have to review 
the program output to determine whether the 
tests passed or failed. Here, I illustrate these ideas  
and how to practically apply them using Matlab 
xUnit, a testing framework available for free 
download at www.mathworks.com/matlabcentral/
fileexchange/22846.

Test Writing Basics
To get started with Matlab xUnit, you first cre-
ate a test file containing one or more test cases.  
Figure 1 shows a test file, test_upslope_area.m, 
that tests the function upslope_area, which be-
longs to a collection of hydrology functions avail-
able on the Matlab Central File Exchange. This 
function collection includes a test suite written 
using Matlab xUnit. (Conventional practice is to 
write tests after the software is written. Increas-
ingly, professional software developers are turning 
this convention on its head; see the “Test-Driven  
Development” sidebar.)
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Test Files
As lines 1-2 of Figure 1 show, the first function in 
a test file always has the same form. Line 1 shows 
the function name, which begins with the prefix 
test, and the output argument name, which is al-
ways suite. The next line calls the helper script 
initTestSuite, which examines the rest of the 
test file, identifies all test cases in it, and bundles 
them up into a test suite, which is returned as the 
output argument. Other functions in the file that 
begin with test are individual test cases. Their 
names make it easy for the test code reader to un-
derstand the test case’s purpose.

Test Cases
Test-case functions follow a simple pattern 
(see Figure 1, lines 4–22). First, you initial-
ize a set of input values to pass to the func-
tion you’re testing. Next, you call the function, 
capturing the output results. Finally, you  
use an assertion utility function—such as  
assertElementsAlmostEqual on line 22—to 
state what you expect to be true about the re-
sults. If A equals B within some tolerance, then 
assertElementsAlmostEqual(A, B) returns 
immediately (and quietly) and the test case pass-
es. Otherwise, it throws an exception; the test 
framework then catches the exception and noti-
fies you that the test case has failed. 

Running Tests
To make test running easy, Matlab xUnit pro-
vides a main driver function, runtests. This 
function finds all the test cases in all the test files 
in your current working directory, gathers them 
into a test suite, runs the test suite, and displays 
the results. Figure 2 shows the output of run­
tests for Matlab xUnit’s own test suite. As the 
figure shows, runtests displays the number of 

Figure 1. Sample test file. The top function, 
test_upslope_area, initializes the test suite. 
The functions test_normalCase, test_
emptyInput, and test_constantInput each 
form one test case. (Used with permission from The 
MathWorks, Inc. All rights reserved.)

1 function suite = test_upslope_area
initTestSuite;2

3

4 function test_normalCase

5 E = [ ...

6 2 2 2 2 2 3 NaN
2 1 2 2 2 3 NaN
2 1 2 2 2 3 NaN
2 2 2 2 2 3 NaN];

7

8

9

10

11 % Expected result hand-computed.
exp_A = [ ...12

13 1, 1,  31/9, 8/3,  2, 1, 0
1, 12, 41/9, 10/3, 2, 1, 0
1, 12, 41/9, 10/3, 2, 1, 0
1, 1,  31/9, 8/3,  2, 1, 0];

14

15

16

17

18 R = dem_flow(E);
T = flow_matrix(E, R);
A = upslope_area(E, T);

19

20

21

22 assertElementsAlmostEqual(A, exp_A);

23

24 function test_emptyInput
E = []; 25

26 R = dem_flow(E);
T = flow_matrix(E, R); 
A = upslope_area(E, T);

27

28

29

30 assertEqual(A, []); 

31

32 function test_constantInput
E = ones(5, 10);
R = dem_flow(E); 
T = flow_matrix(E, R); 
A = upslope_area(E, T); 

33

34

35

36

37

38 assertEqual(A, ones(5, 10)); 

Test-Driven Development

In Microsoft researcher Simon Peyton Jones’ presentation 
about writing research papers,1 he provocatively reverses 

the commonsense notion that you should perform the 
research first and then write the paper. He proposes in-
stead that you write the paper first—after all, writing forces 
you to think clearly about your ideas and also clarifies the 
research needed to support them.

Many software developers similarly reverse the pattern 
of coding and then testing. In test-driven development,2 
developers first write the tests. Naturally, the tests fail un-
til the necessary code is written. This process is repeated 
in small, incremental steps until they’ve implemented all 

the desired functionality. Writing tests first forces you to 
think clearly about your program’s desired behavior.

In test-driven development, then, test writing is an 
integral part of the code construction process rather than 
an activity performed later and intended solely to find bugs. 
Test-driven development can take some getting used to, but 
it can also significantly improve code quality and maintain-
ability. Once you become familiar with the basic mechanics 
of writing and running tests, you might want to give it a try.
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test cases found, how long the test suite ran, and 
whether the suite passed or failed.

When test cases fail, runtests displays  
additional information about each failure (see  
Figure 3). The display includes the name and lo-
cation of each failing test case, as well as clickable 
links that load the code directly into the Matlab 
editor at the point of failure.

Constructing Test Cases
Gathering test cases for your programs’ functions 
and methods is something of an art. You want to 
find a minimal set of cases that covers the mean-
ingful variations in input data and that also covers 
the code logic.

Data Test Cases
To gather your test cases, start with the nominal 
case—that is, choose a typical set of input values 

and determine the expected outputs. For an ex-
ample, see Figure 1 lines 4–22. Next, consider 
inputs at and near the end of the allowed data 
range (that is, conduct a boundary analysis9). These 
test cases help identify off-by-one errors, such as 
writing N instead of N-1 or vice versa.

With more experience, you can gain insight 
into coding-error patterns and add test cases 
that are likely to expose such errors. Experienced 
Matlab quality engineers, for example, routinely 
write test cases with empty input matrices or NaN 
and Inf values. From my own experience with 
image processing software, I anticipate possible 
coding errors for constant-valued images or those 
that have a single row or column. Lines 24–38 of  
Figure 1 show a couple of error-guessing9 test 
cases for the upslope_area function.

Logic Test Cases
In addition to considering input data variations, 
you should also think about the various logic paths 
through your code. Structured basis testing9 is a 
straightforward way to count the minimum num-
ber of test cases you need to fully exercise a par-
ticular function’s logic. You start by counting one 
for the straight-line path through the code; that 
is, for the path without loops or branches. You 
then count one for each appearance of the follow-
ing Matlab keywords and operators: if, elseif, 
while, for, case, otherwise, try, &&, and ||.

Figure 4 shows a code fragment of the run 
method of the Matlab xUnit TestSuite class. 
Minimally exercising this code’s logic paths re-
quires at least four test cases corresponding to the 
highlighted code fragments. The test cases might 
include

two input arguments (•	 nargin == 2) and no test 
components (numel(self.testComponents) 
== 0), a combination that tests the straight-line 
path;
one input argument (•	 nargin == 1);
multiple test components that all pass •	
(numel(self.testComponents) > 0); and
some failing and some passing test com•	
ponents.

There are more sophisticated techniques for 
selecting test cases,9 but this straightforward 
method will get you started and ensure basic test 
coverage of all the code paths.

Determining the Expected Values
Determining expected values can be difficult, 
especially for complex scientific and engineering 

Figure 3. A failing test. When a test case fails, 
runtests shows the failing test case’s location  
and name and provides clickable links that open the 
code in the editor at the point of failure. (Used with 
permission from The MathWorks, Inc. All rights 
reserved.)

Figure 2. Running tests. The function runtests 
automatically runs all tests and determines whether 
they pass or fail. (Used with permission from The 
MathWorks, Inc. All rights reserved.)
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research simulations. Full verification and valida-
tion requires that we consider factors such as the 
appropriateness of physical models and approxi-
mations, error estimates, and numerical solution 
stability.7,8

As a practical matter, to deal with testing 
complex models, I recommend that you start 
by focusing on the “unit” in “unit test.” Even 
complex simulations comprise simpler compu-
tational units that you can individually verify. 
Verifying individual computational units’ be-
havior is a helpful step toward verifying overall 
system behavior. Focusing on the testability of 
small computational units also encourages the 
development of modular, more maintainable 
code.

When it’s infeasible to hand compute expected 
results—even for small computational units—
there are several strategies you can try.

Compare with alternate computation method. The 
Matlab fft function computes the discrete 
Fourier transform (DFT) using a fast algorithm. 
Some fft test cases compare the function’s out-
put against the output computed directly using 
the standard DFT mathematical equation. The 
direct method’s relative slowness doesn’t matter 
for testing purposes.

Check the output’s expected properties. Sometimes, 
you can check program output against the solu-
tion’s expected mathematical or physical proper-
ties. For example, the Matlab backslash operator 
(\) solves linear systems of equations. You can 
check its output, x = A\b, by ensuring that its re-
sidual is sufficiently close to zero—that is, res = 
A*x – b should be very small.

Compare with baseline results. You might be able to 
independently verify your program’s output. If so, 
you can save the verified output to a data file that 
the test-case code can load as the expected value. 
Baseline tests can have some value even when in-
dependent verification isn’t available. In particular, 
baseline tests help you catch unintended changes 
in program behavior. Writing baseline tests is a 
good way to get started when you face an existing 
body of untested code. 

Writing Clear Test Cases
Test code is subject to the same problems as any 
other type of code. But, when test code becomes 
hard to debug and maintain, it tends to fall into 
disuse. Therefore, you should write your test 
code so that it’s trivially easy to track down and 

understand test failures. Here are two suggested 
ways to do this.

Avoid conditional logic. Using conditional logic 
makes it hard to quickly understand the code. 
Also, when different test code executes during 
different runs, tracking down test failures can be 
frustrating. Strive therefore to write test code that 
has no conditional logic. 

Verify one condition per test case. Figure 5 shows a 
portion of a test file for the Matlab Image Pro-
cessing Toolbox’s whitepoint function. As the 
figure shows, there are five different test cases 
and each verifies a single, specific aspect of the 

Figure 5. Test file for the Image Processing Toolbox’s whitepoint 
function. Each of the five test cases verifies just one aspect of program 
behavior and is easy to understand at a glance. (Used with permission 
from The MathWorks, Inc. All rights reserved.)

1 function test_iccWhitePoint  

2 exp_ICCwhite = ... 

3     [hex2dec('7b6b')/hex2dec('8000') 1 ... 

4     hex2dec('6996')/hex2dec('8000')]; 

5 assertEqual(whitepoint('ICC'), exp_ICCwhite); 

6

7 function test_d50WhitePoint

8 exp_d50 = [0.96419865576090, 1.0, ... 

9     0.82511648322104]; 

10 assertEqual(whitepoint('d50'), exp_d50); 

11

12 function test_d65WhitePoint

13 exp_d65 = [.9504 1.0 1.0889];

14 assertEqual(whitepoint('d65'), exp_d65);

15

16 function test_caseInsensitivity

17 assertEqual(whitepoint('ICC'), whitepoint('icc'));

18

19 function test_default

20 assertEqual(whitepoint, whitepoint('ICC'));

Figure 4. Structured basis testing. We count one each for the straight-
line path, the if statement on line 2, the for loop on line 8, and the 
&& operator on line 11. The total test-case count is four. (Used with 
permission from The MathWorks, Inc. All rights reserved.)

1 function did_pass = run(self, monitor)
2 if nargin < 2 
3   monitor = CommandWindowTestRunDisplay();

end 4
5
6 monitor.testComponentStarted(self);

did_pass = true;7
8 for k = 1:numel(self.TestComponents)
9   this_component_passed = ...
10     self.TestComponents{k}.run(monitor);
11   did_pass = did_pass && this_component_passed;

end12
13
14 monitor.testComponentFinished(self, did_pass);
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program behavior. The first three test cases verify 
the correct output for three different inputs (ICC, 
d50, and d65). The fourth test case (lines 16-17) 
verifies the inputs’ case insensitivity, and the fifth 
test case (lines 19-20) verifies the correct default 
behavior. The five tests cases are easy to under-
stand at a glance and have specific names that 
clearly communicate the programmer’s intent.

Using Random Values Appropriately
Novice test writers often use randomly generated 
input data for their test cases. As Gerard Meszaros 
notes, this kind of nondeterministic test case can 
be difficult to debug because it can be hard to re-
produce the failure.10 In the worst case, a particular 
test failure might never appear again despite nu-
merous test runs. To avoid frustration when using 
randomly generated input data, write your test to 
use the same set of randomly generated input data 
for every test run by using a fixed “seed” for the 
random number generator. Alternatively, if you 
want to use a different seed for every test run, 
display or save the seed state so that if you have a 
test failure, you can reproduce and debug it.

Comparing Floating-Point Values
For numerical code, checking that the values in 
your test cases are correct can be surprisingly 
difficult. The problem is illustrated by an oft-
heard complaint on the Usenet newsgroup comp.
soft-sys.matlab: “In Matlab, why is 0.1 + 0.1 + 
0.1 not equal to 0.3?!” That is,

>> 0.1 + 0.1 + 0.1 == 0.3

ans =

	 0

The explanation is that Matlab, like most other 
numeric computation languages today, computes 
using IEEE floating-point numbers and arithme-
tic.11,12 The decimal fractions above, 0.1 and 0.3, 
cannot be represented exactly in IEEE floating 
point because 1/10 and 3/10 don’t have a finite 
representation as a binary fraction. Also, floating-
point arithmetic operations are approximate, not 
exact, and are thus subject to round-off error. As a 
surprising consequence, floating-point arithmetic 
systems don’t strictly obey associativity for mul-
tiplication and addition. You can see this readily 
in Matlab:

>> 3/14 + (3/14 + 15/14) ...  

   == (3/14 + 3/14) + 15/14

ans =

	 0

The actual difference between the two expres-
sions is very small, but not zero:

>> (3/14 + (3/14 + 15/14)) ... 

   – ((3/14 + 3/14) + 15/14)

ans =

	- 2.2204e-016  

Because the order of operations matters, two 
mathematically equivalent computational pro-
cedures can produce different answers when im-
plemented using floating-point arithmetic. Even 
identical code can produce different answers on 
different computers, or when compiled using dif-
ferent compilers, because of optimization varia-
tions or differing versions of underlying runtime 
libraries, such as the basic linear algebra subpro-
grams (BLAS).

For testing, then, we should usually avoid exact 
equality tests when checking floating-point results 
and instead use some sort of tolerance. There are 
two types of floating-point tolerance tests com-
monly used: absolute and relative. Absolute toler-
ance tests for two values a and b:

| | a b T− ≤ ,

where T is the tolerance. The relative tolerance 
test is

| |
| | | |

a b
a b

T−
≤

max( ,  )
.

To understand the difference between these 
tests, consider the values 10.1 and 11.2 and the tol-
erance 10−3. The absolute difference between 
these values is 1.1; given the specified tolerance, 
they clearly fail the absolute tolerance test. Now, 
consider the values 134,712.5 and 134,713.6. Their 
absolute difference is also 1.1, so they also fail the 
absolute tolerance test. However, they pass the 
relative tolerance test:

| |
| | |

134712 5 134713 6
134712 5 134713

. .
max ( . , 

−
.. )

. .
6
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Specifying a relative tolerance of 10−n is roughly 
equivalent to saying you expect two values to dif-
fer by no more than one unit in the nth significant 
digit. 

When you compare two vectors, as opposed to 
two scalars, you should consider whether to apply 
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the tolerance test to each vector element indepen-
dently or whether to apply it using a vector norm. 
For example, suppose you compared the two vec-
tors [1 100,000] and [2 100,000] using a relative 
tolerance of 10−3. If you compare the two vectors 
elementwise, they clearly fail the tolerance test 
because the relative difference between 1 and 2 is 
much higher than the tolerance value. However, 
another way to compare vectors is using a vector 
norm, such as L2:

|| ||
|| || || ||
v v

v v
1 2

1 2

−
≤

max( ,  )
.T

The two vectors [1 100,000] and [2 100,000] 
pass this form of relative tolerance test because 
they differ in the L2-norm sense by only about 1 
part in 100,000.

To compare floating-point values, Matlab 
xUnit provides the functions assertElements­
AlmostEqual and assertVectorsAlmost­

Equal, either of which can use a relative or an 
absolute tolerance.

When choosing a tolerance, it helps to consider 
the machine precision, or ε. This quantity is the 
spacing of floating-point numbers between suc-
cessive powers of two, relative to the lower pow-
er of two. For example, the next floating-point 
number higher than 1 is 1 + ε, while the next  
floating-point number higher than 2 is 2 + 2ε. 
The Matlab function eps returns the machine 
precision. For double-precision floating point, ε is 
approximately 2.2 ∙ 10−16, and for single precision 
it’s approximately 1.2 ∙ 10−7.

For computations involving relatively little 
floating-point arithmetic, a small multiple of ε 
might be appropriate, such as 100ε. For computa-
tions involving coarse approximations, we might 
use much higher tolerances. The default rela-
tive tolerance for the Matlab xUnit assertion 
functions is approximately 10−8, correspond-
ing to eight significant digits. In general, your 
choice of tolerance depends on the particular 
domain and the nature of the your models and 
approximations.

Matlab xUnit Design  
and Architecture
Matlab xUnit was designed to achieve several 
objectives:

Typical M•	 atlab users should be able to write 
and run tests easily.
Tests should run autom•	 atically.

The framework should support the develop-•	
ment of other programs—such as graphical 
user interfaces—that can control test execution 
and reporting.
The framework should be scalable, handling •	
several tests on a simple, short program as well 
as extensive test suites for large applications.
The framework should borrow familiar, proven •	
design and usage concepts from test frameworks 
created for other languages.

To help satisfy these goals, we modeled the frame-
work on xUnit, a class of testing frameworks.10

xUnit
The xUnit family of testing frameworks was pop-
ularized both by the JUnit Java test framework 
and the article “Test Infected—Programmers 
Love Writing Tests” by Erich Gamma and Kent 
Beck.13 You can find xUnit-style test frameworks 
for most widely used programming languages. 
Although different xUnit frameworks vary in 
the details, most share several common design 
elements. I’ll now describe the xUnit design ele-
ments that are most relevant to the workings of 
Matlab xUnit.

First, Matlab xUnit uses test-case objects and 
methods. Each test case is instantiated as a full ob-
ject. The test framework instantiates one object 
of the test subclass for each of the test methods it 
contains. The corresponding Matlab xUnit base 
class is TestCase.

Second, running a particular test case proceeds 
in four phases:

Perform setup steps, such as opening a file or 1.	
connecting to a database.
Call the function being tested2.	 .
Verify that the expected outcome has 3.	
occurred.
Perform any required teardown steps, such 4.	
as closing a file or database connection.

Third, test suites are hierarchical. A Matlab 
xUnit test suite is a collection of individual test 
cases as well as other test suites. This hierarchi-
cal nature allows test suites to scale from small to 
large applications.

Four, most xUnit frameworks support auto-
matic test-case discovery so that the programmer 
doesn’t have to create and update an explicit list of 
test cases. The Matlab xUnit function runtests 
discovers test cases automatically by scanning a 
directory for test files and then it automatically 
runs all the discovered test cases.
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Adapting xUnit for Procedural Programming
Most Matlab code today is procedural, and most 
scientists and engineers who use Matlab prefer 
procedural programming. Although implemented 
in a fully object-oriented xUnit fashion, Matlab 
xUnit was designed from the start to be used by 
procedural programmers and its documentation 
focuses on procedural test writing.

The FunctionHandleTestCase—which is 
a TestCase subclass—supports the procedural 
testing style. The helper script initTestSuite 
(see Figure 1 line 2) automatically turns each test 
function in the file into a FunctionHandleTest­
Case object and returns the collection of them as 
a TestSuite object.

I f you’re a scientist or engineering research-
er, you probably don’t regard yourself as a 
professional software developer. Still, you 
probably write software to get your work 

done. That software’s quality significantly affects 
the quality of your research. Matlab is widely 
used for research in many science and engineer-
ing disciplines; the availability of an industry- 
standard testing approach for software created  
with Matlab can help you incorporate automated 
software testing into your regular practice. By do-
ing so, you can increase your confidence in both 
your software and in the accuracy of the research 
results based upon it.			        
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