
48	 This article has been peer-reviewed.� Computing in Science & Engineering

S o f t w a r e
e n g i n e e r i n g

Software testing can improve software quality. To test effectively, scientists and engineers
should know how to write and run tests, define appropriate test cases, determine expected
outputs, and correctly handle floating-point arithmetic. Using Matlab xUnit automated
testing framework, scientists and engineers using Matlab can make software testing an
integrated part of their software development routine.

Automated Software Testing
for Matlab

A lthough they wouldn’t describe them-
selves as programmers, most science
and engineering researchers routinely
write software to perform their work.

Indeed, in one survey, scientists reportedly
spent about 30 percent of their work time writ-
ing software.1 Software bugs, therefore, have se-
rious implications for the reliability of scientific
and engineering research. One study comparing
nine seismic data processing packages showed that
seismic traces were frequently shifted incorrectly
by off-by-one indexing errors. Even after these
faults were corrected, the various program out-
puts sometimes agreed to within only a single
significant digit, mostly because of bugs.2 Fur-
ther, several journal papers have been retracted
recently because of bugs.3,4 For example, authors
had to retract a widely cited protein-structure pa-
per in Science (as well as several related papers)
because of a column-swapping bug in a data-
analysis program.5 The paper’s incorrect results
confused other researchers and apparently even
some grant panels.

In professional programming practice, soft-
ware testing is a fundamental tool for improv-
ing software quality. From my own experience
interacting with Matlab users, people often

understand the need for software testing, but
might not know how to go about it. This observa-
tion agrees with other reports that scientists and
engineers tend to pick up computing knowledge
on their own and have relatively little software en-
gineering experience.6–8

The practice of unit testing can help improve
the quality of science and engineering software.
Unit tests focus on small units of code, such as a
class, module, method, or function. To be most
effective, unit tests should be automated so that
entire test suites can be run quickly and easily
and so that the developer doesn’t have to review
the program output to determine whether the
tests passed or failed. Here, I illustrate these ideas
and how to practically apply them using Matlab
xUnit, a testing framework available for free
download at www.mathworks.com/matlabcentral/
fileexchange/22846.

Test Writing Basics
To get started with Matlab xUnit, you first cre-
ate a test file containing one or more test cases.
Figure 1 shows a test file, test_upslope_area.m,
that tests the function upslope_area, which be-
longs to a collection of hydrology functions avail-
able on the Matlab Central File Exchange. This
function collection includes a test suite written
using Matlab xUnit. (Conventional practice is to
write tests after the software is written. Increas-
ingly, professional software developers are turning
this convention on its head; see the “Test-Driven
Development” sidebar.)

Steven L. Eddins
The MathWorks, Inc.

1521-9615/09/$26.00 © 2009 IEEE

Copublished by the IEEE CS and the AIP

November/December 2009 � 49

Test Files
As lines 1-2 of Figure 1 show, the first function in
a test file always has the same form. Line 1 shows
the function name, which begins with the prefix
test, and the output argument name, which is al-
ways suite. The next line calls the helper script
initTestSuite, which examines the rest of the
test file, identifies all test cases in it, and bundles
them up into a test suite, which is returned as the
output argument. Other functions in the file that
begin with test are individual test cases. Their
names make it easy for the test code reader to un-
derstand the test case’s purpose.

Test Cases
Test-case functions follow a simple pattern
(see Figure 1, lines 4–22). First, you initial-
ize a set of input values to pass to the func-
tion you’re testing. Next, you call the function,
capturing the output results. Finally, you
use an assertion utility function—such as
assertElementsAlmostEqual on line 22—to
state what you expect to be true about the re-
sults. If A equals B within some tolerance, then
assertElementsAlmostEqual(A, B) returns
immediately (and quietly) and the test case pass-
es. Otherwise, it throws an exception; the test
framework then catches the exception and noti-
fies you that the test case has failed.

Running Tests
To make test running easy, Matlab xUnit pro-
vides a main driver function, runtests. This
function finds all the test cases in all the test files
in your current working directory, gathers them
into a test suite, runs the test suite, and displays
the results. Figure 2 shows the output of run­
tests for Matlab xUnit’s own test suite. As the
figure shows, runtests displays the number of

Figure 1. Sample test file. The top function,
test_upslope_area, initializes the test suite.
The functions test_normalCase, test_
emptyInput, and test_constantInput each
form one test case. (Used with permission from The
MathWorks, Inc. All rights reserved.)

1 function suite = test_upslope_area
initTestSuite;2

3

4 function test_normalCase

5 E = [...

6 2 2 2 2 2 3 NaN
2 1 2 2 2 3 NaN
2 1 2 2 2 3 NaN
2 2 2 2 2 3 NaN];

7

8

9

10

11 % Expected result hand-computed.
exp_A = [...12

13 1, 1, 31/9, 8/3, 2, 1, 0
1, 12, 41/9, 10/3, 2, 1, 0
1, 12, 41/9, 10/3, 2, 1, 0
1, 1, 31/9, 8/3, 2, 1, 0];

14

15

16

17

18 R = dem_flow(E);
T = flow_matrix(E, R);
A = upslope_area(E, T);

19

20

21

22 assertElementsAlmostEqual(A, exp_A);

23

24 function test_emptyInput
E = []; 25

26 R = dem_flow(E);
T = flow_matrix(E, R);
A = upslope_area(E, T);

27

28

29

30 assertEqual(A, []);

31

32 function test_constantInput
E = ones(5, 10);
R = dem_flow(E);
T = flow_matrix(E, R);
A = upslope_area(E, T);

33

34

35

36

37

38 assertEqual(A, ones(5, 10));

Test-Driven Development

In Microsoft researcher Simon Peyton Jones’ presentation
about writing research papers,1 he provocatively reverses

the commonsense notion that you should perform the
research first and then write the paper. He proposes in-
stead that you write the paper first—after all, writing forces
you to think clearly about your ideas and also clarifies the
research needed to support them.

Many software developers similarly reverse the pattern
of coding and then testing. In test-driven development,2
developers first write the tests. Naturally, the tests fail un-
til the necessary code is written. This process is repeated
in small, incremental steps until they’ve implemented all

the desired functionality. Writing tests first forces you to
think clearly about your program’s desired behavior.

In test-driven development, then, test writing is an
integral part of the code construction process rather than
an activity performed later and intended solely to find bugs.
Test-driven development can take some getting used to, but
it can also significantly improve code quality and maintain-
ability. Once you become familiar with the basic mechanics
of writing and running tests, you might want to give it a try.

References
S.P. Jones, “How to Write a Great Research Paper,” Microsoft 1.	

Research, 2004; http://research.microsoft.com/en-us/um/people/

simonpj/papers/giving-a-talk/writing-a-paper-slides.pdf.

K. Beck, 2.	 Test Driven Development: By Example, Addison-Wesley, 2002.

50� Computing in Science & Engineering

test cases found, how long the test suite ran, and
whether the suite passed or failed.

When test cases fail, runtests displays
additional information about each failure (see
Figure 3). The display includes the name and lo-
cation of each failing test case, as well as clickable
links that load the code directly into the Matlab
editor at the point of failure.

Constructing Test Cases
Gathering test cases for your programs’ functions
and methods is something of an art. You want to
find a minimal set of cases that covers the mean-
ingful variations in input data and that also covers
the code logic.

Data Test Cases
To gather your test cases, start with the nominal
case—that is, choose a typical set of input values

and determine the expected outputs. For an ex-
ample, see Figure 1 lines 4–22. Next, consider
inputs at and near the end of the allowed data
range (that is, conduct a boundary analysis9). These
test cases help identify off-by-one errors, such as
writing N instead of N-1 or vice versa.

With more experience, you can gain insight
into coding-error patterns and add test cases
that are likely to expose such errors. Experienced
Matlab quality engineers, for example, routinely
write test cases with empty input matrices or NaN
and Inf values. From my own experience with
image processing software, I anticipate possible
coding errors for constant-valued images or those
that have a single row or column. Lines 24–38 of
Figure 1 show a couple of error-guessing9 test
cases for the upslope_area function.

Logic Test Cases
In addition to considering input data variations,
you should also think about the various logic paths
through your code. Structured basis testing9 is a
straightforward way to count the minimum num-
ber of test cases you need to fully exercise a par-
ticular function’s logic. You start by counting one
for the straight-line path through the code; that
is, for the path without loops or branches. You
then count one for each appearance of the follow-
ing Matlab keywords and operators: if, elseif,
while, for, case, otherwise, try, &&, and ||.

Figure 4 shows a code fragment of the run
method of the Matlab xUnit TestSuite class.
Minimally exercising this code’s logic paths re-
quires at least four test cases corresponding to the
highlighted code fragments. The test cases might
include

two input arguments (•	 nargin == 2) and no test
components (numel(self.testComponents)
== 0), a combination that tests the straight-line
path;
one input argument (•	 nargin == 1);
multiple test components that all pass •	
(numel(self.testComponents) > 0); and
some failing and some passing test com•	
ponents.

There are more sophisticated techniques for
selecting test cases,9 but this straightforward
method will get you started and ensure basic test
coverage of all the code paths.

Determining the Expected Values
Determining expected values can be difficult,
especially for complex scientific and engineering

Figure 3. A failing test. When a test case fails,
runtests shows the failing test case’s location
and name and provides clickable links that open the
code in the editor at the point of failure. (Used with
permission from The MathWorks, Inc. All rights
reserved.)

Figure 2. Running tests. The function runtests
automatically runs all tests and determines whether
they pass or fail. (Used with permission from The
MathWorks, Inc. All rights reserved.)

November/December 2009 � 51

research simulations. Full verification and valida-
tion requires that we consider factors such as the
appropriateness of physical models and approxi-
mations, error estimates, and numerical solution
stability.7,8

As a practical matter, to deal with testing
complex models, I recommend that you start
by focusing on the “unit” in “unit test.” Even
complex simulations comprise simpler compu-
tational units that you can individually verify.
Verifying individual computational units’ be-
havior is a helpful step toward verifying overall
system behavior. Focusing on the testability of
small computational units also encourages the
development of modular, more maintainable
code.

When it’s infeasible to hand compute expected
results—even for small computational units—
there are several strategies you can try.

Compare with alternate computation method. The
Matlab fft function computes the discrete
Fourier transform (DFT) using a fast algorithm.
Some fft test cases compare the function’s out-
put against the output computed directly using
the standard DFT mathematical equation. The
direct method’s relative slowness doesn’t matter
for testing purposes.

Check the output’s expected properties. Sometimes,
you can check program output against the solu-
tion’s expected mathematical or physical proper-
ties. For example, the Matlab backslash operator
(\) solves linear systems of equations. You can
check its output, x = A\b, by ensuring that its re-
sidual is sufficiently close to zero—that is, res =
A*x – b should be very small.

Compare with baseline results. You might be able to
independently verify your program’s output. If so,
you can save the verified output to a data file that
the test-case code can load as the expected value.
Baseline tests can have some value even when in-
dependent verification isn’t available. In particular,
baseline tests help you catch unintended changes
in program behavior. Writing baseline tests is a
good way to get started when you face an existing
body of untested code.

Writing Clear Test Cases
Test code is subject to the same problems as any
other type of code. But, when test code becomes
hard to debug and maintain, it tends to fall into
disuse. Therefore, you should write your test
code so that it’s trivially easy to track down and

understand test failures. Here are two suggested
ways to do this.

Avoid conditional logic. Using conditional logic
makes it hard to quickly understand the code.
Also, when different test code executes during
different runs, tracking down test failures can be
frustrating. Strive therefore to write test code that
has no conditional logic.

Verify one condition per test case. Figure 5 shows a
portion of a test file for the Matlab Image Pro-
cessing Toolbox’s whitepoint function. As the
figure shows, there are five different test cases
and each verifies a single, specific aspect of the

Figure 5. Test file for the Image Processing Toolbox’s whitepoint
function. Each of the five test cases verifies just one aspect of program
behavior and is easy to understand at a glance. (Used with permission
from The MathWorks, Inc. All rights reserved.)

1 function test_iccWhitePoint

2 exp_ICCwhite = ...

3 [hex2dec('7b6b')/hex2dec('8000') 1 ...

4 hex2dec('6996')/hex2dec('8000')];

5 assertEqual(whitepoint('ICC'), exp_ICCwhite);

6

7 function test_d50WhitePoint

8 exp_d50 = [0.96419865576090, 1.0, ...

9 0.82511648322104];

10 assertEqual(whitepoint('d50'), exp_d50);

11

12 function test_d65WhitePoint

13 exp_d65 = [.9504 1.0 1.0889];

14 assertEqual(whitepoint('d65'), exp_d65);

15

16 function test_caseInsensitivity

17 assertEqual(whitepoint('ICC'), whitepoint('icc'));

18

19 function test_default

20 assertEqual(whitepoint, whitepoint('ICC'));

Figure 4. Structured basis testing. We count one each for the straight-
line path, the if statement on line 2, the for loop on line 8, and the
&& operator on line 11. The total test-case count is four. (Used with
permission from The MathWorks, Inc. All rights reserved.)

1 function did_pass = run(self, monitor)
2 if nargin < 2
3 monitor = CommandWindowTestRunDisplay();

end 4
5
6 monitor.testComponentStarted(self);

did_pass = true;7
8 for k = 1:numel(self.TestComponents)
9 this_component_passed = ...
10 self.TestComponents{k}.run(monitor);
11 did_pass = did_pass && this_component_passed;

end12
13
14 monitor.testComponentFinished(self, did_pass);

52� Computing in Science & Engineering

program behavior. The first three test cases verify
the correct output for three different inputs (ICC,
d50, and d65). The fourth test case (lines 16-17)
verifies the inputs’ case insensitivity, and the fifth
test case (lines 19-20) verifies the correct default
behavior. The five tests cases are easy to under-
stand at a glance and have specific names that
clearly communicate the programmer’s intent.

Using Random Values Appropriately
Novice test writers often use randomly generated
input data for their test cases. As Gerard Meszaros
notes, this kind of nondeterministic test case can
be difficult to debug because it can be hard to re-
produce the failure.10 In the worst case, a particular
test failure might never appear again despite nu-
merous test runs. To avoid frustration when using
randomly generated input data, write your test to
use the same set of randomly generated input data
for every test run by using a fixed “seed” for the
random number generator. Alternatively, if you
want to use a different seed for every test run,
display or save the seed state so that if you have a
test failure, you can reproduce and debug it.

Comparing Floating-Point Values
For numerical code, checking that the values in
your test cases are correct can be surprisingly
difficult. The problem is illustrated by an oft-
heard complaint on the Usenet newsgroup comp.
soft-sys.matlab: “In Matlab, why is 0.1 + 0.1 +
0.1 not equal to 0.3?!” That is,

>> 0.1 + 0.1 + 0.1 == 0.3

ans =

	 0

The explanation is that Matlab, like most other
numeric computation languages today, computes
using IEEE floating-point numbers and arithme-
tic.11,12 The decimal fractions above, 0.1 and 0.3,
cannot be represented exactly in IEEE floating
point because 1/10 and 3/10 don’t have a finite
representation as a binary fraction. Also, floating-
point arithmetic operations are approximate, not
exact, and are thus subject to round-off error. As a
surprising consequence, floating-point arithmetic
systems don’t strictly obey associativity for mul-
tiplication and addition. You can see this readily
in Matlab:

>> 3/14 + (3/14 + 15/14) ...

 == (3/14 + 3/14) + 15/14

ans =

	 0

The actual difference between the two expres-
sions is very small, but not zero:

>> (3/14 + (3/14 + 15/14)) ...

 – ((3/14 + 3/14) + 15/14)

ans =

	- 2.2204e-016

Because the order of operations matters, two
mathematically equivalent computational pro-
cedures can produce different answers when im-
plemented using floating-point arithmetic. Even
identical code can produce different answers on
different computers, or when compiled using dif-
ferent compilers, because of optimization varia-
tions or differing versions of underlying runtime
libraries, such as the basic linear algebra subpro-
grams (BLAS).

For testing, then, we should usually avoid exact
equality tests when checking floating-point results
and instead use some sort of tolerance. There are
two types of floating-point tolerance tests com-
monly used: absolute and relative. Absolute toler-
ance tests for two values a and b:

| | a b T− ≤ ,

where T is the tolerance. The relative tolerance
test is

| |
| | | |

a b
a b

T−
≤

max(,)
.

To understand the difference between these
tests, consider the values 10.1 and 11.2 and the tol-
erance 10−3. The absolute difference between
these values is 1.1; given the specified tolerance,
they clearly fail the absolute tolerance test. Now,
consider the values 134,712.5 and 134,713.6. Their
absolute difference is also 1.1, so they also fail the
absolute tolerance test. However, they pass the
relative tolerance test:

| |
| | |

134712 5 134713 6
134712 5 134713

. .
max (. ,

−
..)

. .
6

8 1655 10 106 3

|
= ⋅ <=− −

Specifying a relative tolerance of 10−n is roughly
equivalent to saying you expect two values to dif-
fer by no more than one unit in the nth significant
digit.

When you compare two vectors, as opposed to
two scalars, you should consider whether to apply

November/December 2009 � 53

the tolerance test to each vector element indepen-
dently or whether to apply it using a vector norm.
For example, suppose you compared the two vec-
tors [1 100,000] and [2 100,000] using a relative
tolerance of 10−3. If you compare the two vectors
elementwise, they clearly fail the tolerance test
because the relative difference between 1 and 2 is
much higher than the tolerance value. However,
another way to compare vectors is using a vector
norm, such as L2:

|| ||
|| || || ||
v v

v v
1 2

1 2

−
≤

max(,)
.T

The two vectors [1 100,000] and [2 100,000]
pass this form of relative tolerance test because
they differ in the L2-norm sense by only about 1
part in 100,000.

To compare floating-point values, Matlab
xUnit provides the functions assertElements­
AlmostEqual and assertVectorsAlmost­

Equal, either of which can use a relative or an
absolute tolerance.

When choosing a tolerance, it helps to consider
the machine precision, or ε. This quantity is the
spacing of floating-point numbers between suc-
cessive powers of two, relative to the lower pow-
er of two. For example, the next floating-point
number higher than 1 is 1 + ε, while the next
floating-point number higher than 2 is 2 + 2ε.
The Matlab function eps returns the machine
precision. For double-precision floating point, ε is
approximately 2.2 ∙ 10−16, and for single precision
it’s approximately 1.2 ∙ 10−7.

For computations involving relatively little
floating-point arithmetic, a small multiple of ε
might be appropriate, such as 100ε. For computa-
tions involving coarse approximations, we might
use much higher tolerances. The default rela-
tive tolerance for the Matlab xUnit assertion
functions is approximately 10−8, correspond-
ing to eight significant digits. In general, your
choice of tolerance depends on the particular
domain and the nature of the your models and
approximations.

Matlab xUnit Design
and Architecture
Matlab xUnit was designed to achieve several
objectives:

Typical M•	 atlab users should be able to write
and run tests easily.
Tests should run autom•	 atically.

The framework should support the develop-•	
ment of other programs—such as graphical
user interfaces—that can control test execution
and reporting.
The framework should be scalable, handling •	
several tests on a simple, short program as well
as extensive test suites for large applications.
The framework should borrow familiar, proven •	
design and usage concepts from test frameworks
created for other languages.

To help satisfy these goals, we modeled the frame-
work on xUnit, a class of testing frameworks.10

xUnit
The xUnit family of testing frameworks was pop-
ularized both by the JUnit Java test framework
and the article “Test Infected—Programmers
Love Writing Tests” by Erich Gamma and Kent
Beck.13 You can find xUnit-style test frameworks
for most widely used programming languages.
Although different xUnit frameworks vary in
the details, most share several common design
elements. I’ll now describe the xUnit design ele-
ments that are most relevant to the workings of
Matlab xUnit.

First, Matlab xUnit uses test-case objects and
methods. Each test case is instantiated as a full ob-
ject. The test framework instantiates one object
of the test subclass for each of the test methods it
contains. The corresponding Matlab xUnit base
class is TestCase.

Second, running a particular test case proceeds
in four phases:

Perform setup steps, such as opening a file or 1.	
connecting to a database.
Call the function being tested2.	 .
Verify that the expected outcome has 3.	
occurred.
Perform any required teardown steps, such 4.	
as closing a file or database connection.

Third, test suites are hierarchical. A Matlab
xUnit test suite is a collection of individual test
cases as well as other test suites. This hierarchi-
cal nature allows test suites to scale from small to
large applications.

Four, most xUnit frameworks support auto-
matic test-case discovery so that the programmer
doesn’t have to create and update an explicit list of
test cases. The Matlab xUnit function runtests
discovers test cases automatically by scanning a
directory for test files and then it automatically
runs all the discovered test cases.

54� Computing in Science & Engineering

Adapting xUnit for Procedural Programming
Most Matlab code today is procedural, and most
scientists and engineers who use Matlab prefer
procedural programming. Although implemented
in a fully object-oriented xUnit fashion, Matlab
xUnit was designed from the start to be used by
procedural programmers and its documentation
focuses on procedural test writing.

The FunctionHandleTestCase—which is
a TestCase subclass—supports the procedural
testing style. The helper script initTestSuite
(see Figure 1 line 2) automatically turns each test
function in the file into a FunctionHandleTest­
Case object and returns the collection of them as
a TestSuite object.

I f you’re a scientist or engineering research-
er, you probably don’t regard yourself as a
professional software developer. Still, you
probably write software to get your work

done. That software’s quality significantly affects
the quality of your research. Matlab is widely
used for research in many science and engineer-
ing disciplines; the availability of an industry-
standard testing approach for software created
with Matlab can help you incorporate automated
software testing into your regular practice. By do-
ing so, you can increase your confidence in both
your software and in the accuracy of the research
results based upon it.			

Acknowledgments
Special thanks to Greg Wilson and Gerard Meszaros
for their helpful comments on Matlab xUnit’s design
and architecture, as well as to Mara Yale, Rob Comer,
and Bill McKeeman for their suggestions on this ar-
ticle. I also thank the anonymous reviewers for their
helpful and constructive comments. Matlab is a reg-
istered trademark of The MathWorks, Inc.

References
J.E. Hannay et al., “How Do Scientists Develop and 1.	

Use Scientific Software?” Proc. 2nd Int’l Workshop

Software Eng. Computational Science and Eng., IEEE CS

Press, 2009, pp. 1–8.

L. Hatton, “The T Experiments: Errors in Scientific 2.	

Software,” IEEE Computational Science & Eng., vol. 4,

no. 2, 1997, pp. 27–38.

G. Chang et al., “Retraction of Pornillos et al., 3.	 Sci-

ence 310 (5756) 1950–1953. Retraction of Reyes and

Chang, Science 308 (5724) 1028–1031. Retraction of

Chang and Roth, Science 293 (5536) 1793–1800,”

Science, vol. 314, no. 5807, 2006, p. 1875; www.

sciencemag.org/cgi/content/full/314/5807/1875b.

B.G. Hall and S.J. Salipante, “Retraction: Measures of 4.	

Clade Confidence Do Not Correlate with Accuracy

of Phylogenetic Trees,” PLoS Computational Biology,

vol. 3, no. 3, 2007; www.ploscompbiol.org/article/

info:doi%2F10.1371%2Fjournal.pcbi.0030051.

G. Miller, “A Scientist’s Nightmare: Software Problem 5.	

Leads to Five Retractions,” Science, vol. 314, no. 5807,

2006, pp. 1856–1857.

G. Wilson, “What Should Computer Scientists 6.	

Teach to Physical Scientists and Engineers?” IEEE

Computational Science & Eng., vol. 3, no. 2, 1996,

pp. 46–65.

D.E. Stevenson, “A Critical Look at Quality in Large-7.	

Scale Simulations,” Computing in Science & Eng.,

vol. 1, no. 3, 1999, pp. 53–63.

D. Kelly and R. Sanders, “The Challenge of Testing 8.	

Scientific Software,” Proc. Conf. Assoc. Software Testing:

Beyond the Boundaries (CAST 2008), Assoc. Software

Testing, 2008; www.associationforsoftwaretesting.

org/documents/cast08/DianeKellyRebeccaSanders_

TheChallengeOfTestingScientificSoftware_paper.pdf.

S. McConnell, 9.	 Code Complete: A Practical Handbook of

Software Construction, 2nd ed., Microsoft Press, 2004.

G. Meszaros, 10.	 xUnit Test Patterns: Refactoring Test

Code, Pearson Education, 2007.

C. Moler, “Floating Points: IEEE Standard Unifies 11.	

Arithmetic Model,” Cleve’s Corner, The MathWorks,

1996; www.mathworks.com/company/newsletters/

news_notes/pdf/Fall96Cleve.pdf.

D. Goldberg, “What Every Computer Scientist 12.	

Should Know About Floating-Point Arithmetic,”

Computing Surveys, vol. 23, no. 1, 1991, pp. 5–48.

E. Gamma and K. Beck, “JUnit Test Infected: Pro-13.	

grammers Love Writing Tests,” Source Forge, 1998;

http://junit.sourceforge.net/doc/testinfected/testing.

htm.

Steven L. Eddins manages the image processing and
geospatial computing software development team at
The MathWorks, Inc. He is coauthor of Digital Im-
age Processing Using Matlab (Gatesmark Publish-
ing, 2009). Eddins has a PhD in electrical engineering
from the Georgia Institute of Technology. He’s a
senior member of IEEE and a member of SPIE. Con-
tact him at steve.eddins@mathworks.com.

Selected articles and columns from IEEE Computer
Society publications are also available for free at

http://ComputingNow.computer.org.

November/December 2009 � 55

