Classical Gram-Schmidt and Modified Gram-Schmidt are two algorithms for orthogonalizing a set of vectors. Householder elementary reflectors can be used for the same task. The three algorithms have very different roundoff error properties…. 더 읽어보기 >>
Classical Gram-Schmidt and Modified Gram-Schmidt are two algorithms for orthogonalizing a set of vectors. Householder elementary reflectors can be used for the same task. The three algorithms have very different roundoff error properties…. 더 읽어보기 >>

At a minisymposium honoring Charlie Van Loan this week during the SIAM Annual Meeting, I will describe several dubious methods for computing the zeros of polynomials. One of the methods is the Graeffe Root-squaring method, which I will demonstrate using my favorite cubic, $x^3-2x-5$.... 더 읽어보기 >>

During the SIAM Annual Meeting this summer in Boston there will be a special minisymposium Wednesday afternoon, July 13, honoring Charlie Van Loan, who is retiring at Cornell. (I use "at" because he's not leaving Ithaca.) I will give a talk titled "19 Dubious Way to Compute the Zeros of a Polynomial", following in the footsteps of the paper about the matrix exponential that Charlie and I wrote in 1978 and updated 25 years later. I really don't have 19 ways to compute polynomial zeros, but then I only have a half hour for my talk. Most of the methods have been described previously in this blog. Today's post is mostly about "roots".... 더 읽어보기 >>




The cubic polynomial $x^3 - 2x - 5$ has a unique place in the history of numerical methods.... 더 읽어보기 >>

MATLAB adds capability to search for an interval with a sign change.... 더 읽어보기 >>


Th. J. Dekker's zeroin algorithm from 1969 is one of my favorite algorithms. An elegant technique combining bisection and the secant method for finding a zero of a function of a real variable, it has become fzero in MATLAB today. This is the first of a three part series.... 더 읽어보기 >>